首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   821篇
  免费   50篇
  871篇
  2022年   9篇
  2021年   8篇
  2020年   3篇
  2019年   13篇
  2018年   23篇
  2017年   6篇
  2016年   16篇
  2015年   40篇
  2014年   35篇
  2013年   41篇
  2012年   67篇
  2011年   56篇
  2010年   41篇
  2009年   38篇
  2008年   33篇
  2007年   47篇
  2006年   41篇
  2005年   35篇
  2004年   39篇
  2003年   43篇
  2002年   31篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   16篇
  1997年   7篇
  1996年   13篇
  1995年   18篇
  1994年   9篇
  1993年   9篇
  1992年   15篇
  1991年   5篇
  1990年   7篇
  1989年   7篇
  1988年   3篇
  1987年   8篇
  1986年   2篇
  1985年   5篇
  1984年   8篇
  1983年   3篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1979年   6篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1973年   6篇
  1972年   3篇
排序方式: 共有871条查询结果,搜索用时 0 毫秒
121.
Gonadotropin-releasing hormone (GnRH) antagonists for controlled ovarian stimulation (COS) were only recently introduced into China. The efficacy and safety of the GnRH antagonist ganirelix was assessed in a multicenter, controlled, open-label study, in which Chinese women were randomized to either ganirelix (n = 113) or a long GnRH agonist protocol of triptorelin (n = 120). The primary end point was the amount of recombinant follicle-stimulating hormone (rFSH) required to meet the human chorionic gonadotropin criterion (three follicles ≥17 mm). The amount of rFSH needed was significantly lower for ganirelix (1272 IU) vs. triptorelin (1416 IU; P< 0.001). Ongoing pregnancy rates per started cycle were 39.8% (ganirelix) and 39.2% (triptorelin). Although both treatments were well tolerated, cancellation due to risk of ovarian hyperstimulation syndrome (OHSS) was less frequent with ganirelix (1.8%) than triptorelin (7.5%) (P = 0.06). Less rFSH was needed in the ganirelix protocol than the long GnRH agonist protocol, with fewer reported cases of OHSS and similar pregnancy rates.  相似文献   
122.
123.
This review provides an overview of some of the growing body of research on the effects of spinal manipulation on sensory processing, motor output, functional performance and sensorimotor integration. It describes a body of work using somatosensory evoked potentials (SEPs), transcranial magnetic nerve stimulation, and electromyographic techniques to demonstrate neurophysiological changes following spinal manipulation. This work contributes to the understanding of how an initial episode(s) of back or neck pain may lead to ongoing changes in input from the spine which over time lead to altered sensorimotor integration of input from the spine and limbs.  相似文献   
124.
125.
Nitric oxide (NO) is a key signaling molecule in plants. This analysis of Arabidopsis thaliana HOT5 (sensitive to hot temperatures), which is required for thermotolerance, uncovers a role of NO in thermotolerance and plant development. HOT5 encodes S-nitrosoglutathione reductase (GSNOR), which metabolizes the NO adduct S-nitrosoglutathione. Two hot5 missense alleles and two T-DNA insertion, protein null alleles were characterized. The missense alleles cannot acclimate to heat as dark-grown seedlings but grow normally and can heat-acclimate in the light. The null alleles cannot heat-acclimate as light-grown plants and have other phenotypes, including failure to grow on nutrient plates, increased reproductive shoots, and reduced fertility. The fertility defect of hot5 is due to both reduced stamen elongation and male and female fertilization defects. The hot5 null alleles show increased nitrate and nitroso species levels, and the heat sensitivity of both missense and null alleles is associated with increased NO species. Heat sensitivity is enhanced in wild-type and mutant plants by NO donors, and the heat sensitivity of hot5 mutants can be rescued by an NO scavenger. An NO-overproducing mutant is also defective in thermotolerance. Together, our results expand the importance of GSNOR-regulated NO homeostasis to abiotic stress and plant development.  相似文献   
126.
Secreted Frizzled-related proteins (Sfrps) are extracellular regulators of Wnt signalling and play important roles in developmental and oncogenic processes. They are known to be upregulated in regenerating muscle and in myoblast cultures but their function is unknown. Here, we show that the addition of recombinant Sfrp1 or Sfrp2 to C2C12 cell line cultures or to primary cultures of satellite cells results in the inhibition of myotube formation with no significant effect on the cell cycle or apoptosis. Even though at confluence, treated and untreated cultures are identical in appearance, analyses have shown that, for maximum effect, the cells have to be treated while they are proliferating. Furthermore, removal of Sfrp from the culture medium during differentiation restores normal myotube formation. We conclude that Sfrp1 and Sfrp2 act to prevent myoblasts from entering the terminal differentiation process. S. Descamps and J. Levin contributed equally to this work.  相似文献   
127.
Uncoupling protein 2 (UCP2) belongs to a family of transporters of the mitochondrial inner membrane and is reported to uncouple respiration from ATP synthesis. Our observation that the amino acid glutamine specifically induces UCP2 protein expression prompted us to investigate metabolic consequences of a UCP2 knockdown (Ucp2-KO) when glutamine is offered as a substrate. We found that Ucp2-KO macrophages incubated in the presence of glutamine exhibit a lower ammonium release, a decreased respiratory rate, and an intracellular accumulation of aspartate. Therefore, we conclude that UCP2 expression is required for efficient oxidation of glutamine in macrophages. This role of UCP2 in glutamine metabolism appears independent from the uncoupling activity of UCP2.  相似文献   
128.
Brain-derived neurotrophic factor (BDNF) acts as an anorexigenic factor in the dorsal vagal complex (DVC) of the adult rat brain stem. The DVC contains the premotoneurons controlling swallowing, a motor component of feeding behavior. Although rats with transected midbrain do not seek out food, they are able to swallow and to ingest food. Because BDNF and tropomyosin-related kinase B (TrkB) receptors are expressed in the DVC, this study hypothesized that BDNF could modify the activity of premotoneurons involved in swallowing. Repetitive electrical stimulation of the superior laryngeal nerve (SLN) induces rhythmic swallowing that can be recorded with electromyographic electrodes inserted in sublingual muscles. We show that a microinjection of BDNF in the swallowing network induced a rapid, transient, and dose-dependant inhibition of rhythmic swallowing. This BDNF effect appeared to be mediated via TrkB activation, since it no longer occurred when TrkB receptors were antagonized by K-252a. Interestingly, swallowing was inhibited when subthreshold doses of BDNF and GABA were coinjected, suggesting a synergistic interaction between these two signaling substances. Moreover, BDNF no longer had an inhibitory effect on swallowing when coinjected with bicuculline, a GABA(A) receptor antagonist. This blockade of BDNF inhibitory effect on swallowing was reversible, since it reappeared when BDNF was injected 15 min after bicuculline. Finally, we show that stimulation of SLN induced a decrease in BDNF protein within the DVC. Together, our results strongly suggest that BDNF inhibits swallowing via modulation of the GABAergic signaling within the central pattern generator of swallowing.  相似文献   
129.
The recent discovery of cancer cell plasticity, i.e. their ability to reprogram into cancer stem cells (CSCs) either naturally or under chemotherapy and/or radiotherapy, has changed, once again, the way we consider cancer treatment. If cancer stemness is a reversible epigenetic state rather than a genetic identity, opportunities will arise for therapeutic strategies that remodel epigenetic landscapes of CSCs. However, the systematic use of DNA methyltransferase and histone deacetylase inhibitors, alone or in combination, in advanced solid tumors including colorectal cancers, regardless of their molecular subtypes, does not seem to be the best strategy. In this review, we first summarize the knowledge researchers have gathered on the epigenetic signatures of CSCs with the difficulty of isolating rare populations of cells. We raise questions about the relevant use of currently available epigenetic inhibitors (epidrugs) while the expression of numerous cancer stem cell markers are often repressed by epigenetic mechanisms. These markers include the three cluster of differentiation CD133, CD44 and CD166 that have been extensively used for the isolation of colon CSCs.and . Finally, we describe current treatment strategies using epidrugs, and we hypothesize that, using correlation tools comparing associations of relevant CSC markers with chromatin modifier expression, we could identify better candidates for epienzyme targeting.  相似文献   
130.
Diets given for 30 days with various mono-(MUFA) and poly-(PUFA) unsaturated fatty acid contents were evaluated for brain protection in magnesium-deficient mice: a commercial and three synthetic diets (n-6PUFA, n-3PUFA and MUFA-based chows enriched with 5% corn/sunflower oils 1:3, with 5% rapeseed oil and with 5% high oleic acid sunflower oil/sunflower oil 7:3, respectively). Unlike magnesium deprivation, they induced significant differences in brain and erythrocyte membrane phospholipid fatty acid compositions. n-3PUFA but not other diets protected magnesium-deficient mice against hyperactivity and moderately towards maximal electroshock- and NMDA-induced seizures. This diet also inhibited audiogenic seizures by 50%, preventing animal deaths. Because, like n-6PUFA diet, matched control MUFA diet failed to induce brain protections, alpha-linolenate (ALA) rather than reduced n-6 PUFA diet content is concluded to cause n-3PUFA neuroprotection. Present in vivo data also corroborate literature in vitro inhibition of T type calcium channels by n-3 PUFA, adding basis to ALA supplementation in human anti-epileptic/neuroprotective strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号