首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   19篇
  国内免费   1篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   13篇
  2014年   12篇
  2013年   13篇
  2012年   20篇
  2011年   19篇
  2010年   7篇
  2009年   15篇
  2008年   21篇
  2007年   19篇
  2006年   24篇
  2005年   9篇
  2004年   8篇
  2003年   5篇
  2002年   7篇
  2001年   11篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1994年   2篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   7篇
  1988年   3篇
  1987年   6篇
  1985年   2篇
  1984年   1篇
  1982年   4篇
  1980年   2篇
  1977年   2篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有278条查询结果,搜索用时 31 毫秒
51.
Phosphoinositides account for only a tiny fraction of cellular phospholipids but are extremely important in the regulation of the recruitment and activity of many signaling proteins in cellular membranes. Phosphatidylinositol (PtdIns) 4-kinases generate PtdIns 4-phosphate, the precursor of important regulatory phosphoinositides but also an emerging regulatory molecule in its own right. The four mammalian PtdIns 4-kinases regulate a diverse array of signaling events, as well as vesicular trafficking and lipid transport, but the mechanisms by which their lipid product PtdIns 4-phosphate controls these processes is only beginning to unfold.  相似文献   
52.
Motile nonmuscle cells concentrate phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in areas of new actin filament assembly. There is great interest in assessing the in vivo functional significance of these phosphoinositides, and we have used Listeria monocytogenes to explore the contribution of PtdIns(3,4,5)P3 and PtdIns(4,5)P2 to its actin-based motility. In Listeria-infected PtK2 cells Akt-pleckstrin homology (PH)-green fluorescent protein (GFP) and phospholipase C delta (PLC delta)-PH-GFP both first concentrate at the front of motile Listeria, subsequently surrounding the bacterium and then concentrating in the actin filament tail. Surprisingly, Listeria ActA mutant strains lacking the putative phosphoinositide binding site are also able to concentrate these probes. Reduction of available PtdIns(3,4,5)P3 by expression of Akt-PH-GFP and available PtdIns(4,5)P2 by expression of PLC delta-PH-GFP both significantly slow Listeria actin-based movement. Treatment of cells with the PI 3-kinase inhibitor, LY294002, dissociates Akt-PH but not PLC delta-PH, from the bacterial surface and cell membranes, and results in near complete inhibition of Listeria actin-based motility and filopod formation. Removal of LY294002 results in rapid and full recovery of Akt-PH localization, Listeria actin-based motility, and filopod formation. These findings suggest that PtdIns(4,5)P2 is concentrated at the surface of Listeria and serves as the substrate for PtdIns(3,4,5)P3 production, indicating a central role for PI 3-kinases in Listeria intracellular actin-based motility and filopod formation.  相似文献   
53.
Previous reports have suggested that protein disulfide isomerases (PDIs) have transglutaminase (TGase) activity. The structural basis of this reaction has not been revealed. We demonstrate here that Caenorhabditis elegans PDI-3 can function as a Ca(2+)-dependent TGase in assays based on modification of protein- and peptide-bound glutamine residues. By site-directed mutagenesis the second cysteine residue of the -CysGlyHisCys- motif in the thioredoxin domain of the enzyme protein was found to be the active site of the transamidation reaction and chemical modification of histidine in their motif blocked TGase activity.  相似文献   
54.
In adrenal glomerulosa cells, angiotensin II (AII) rapidly stimulates the formation of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and causes marked long-term changes in the levels of highly phosphorylated inositols. Glomerulosa cells prelabeled with [3H]inositol for 48 h and exposed to AII for 10 min showed prominent increases in inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) and smaller increases in two additional tetrakisphosphates, Ins-1,3,4,6-P4 and another (Ins-3,4,5,6-P4) eluting in the position of Ins-3,4,5,6-P4 and its stereoisomer, Ins-1,4,5,6-P4, on anion exchange liquid chromatography. A concomitant decrease in InsP5 indicates that an increase in Ins-1,4,5,6-P4, the breakdown product of InsP5, is probably responsible for the initial rise in Ins-3,4,5,6-P4 during 10 min stimulation by AII. During prolonged stimulation by AII, Ins-1,3,4,5-P4 began to decline from its high, stimulated level after the first hour but the level of Ins-1,3,4,6-P4 remained elevated for several hours. There were also progressive increases in the levels of Ins-3,4,5,6-P4 and InsP5 during stimulation for up to 16 h with AII. Treatment of adrenal cells for 16 h with the cyclic AMP-mediated secretagogue, adrenocorticotropic hormone (ACTH), slightly increased basal levels of Ins-1,3,4,6-P4, Ins-3,4,5,6-P4, and InsP5, and enhanced the subsequent AII-stimulated increases in the two additional tetrakisphosphate isomers but not of inositol trisphosphates or Ins-1,3,4,5-P4. This change in the pattern of the higher inositol phosphate response to AII was manifested within 2 h after exposure to ACTH, and was mimicked by treatment with 8-bromo cyclic AMP or forskolin. Treatment with 50 microM cycloheximide abolished the ACTH-induced increases in inositol polyphosphate responses during AII stimulation, but had no effect on the responses of untreated cells to AII. The conversion of [3H]Ins-1,3,4-P3 to [3H]Ins-1,3,4,6-P4, a reaction linking the receptor-mediated InsP3 response to higher inositol phosphates, was enhanced in permeabilized cells that were pretreated for 16 h with either ACTH or AII. These results demonstrate that the reactions by which Ins-1,3,4,6-P4 and Ins-3,4,5,6-P4 are formed and converted to InsP5 are influenced by agonist-stimulated regulatory processes that include both calcium-dependent and cyclic AMP-dependent mechanisms of target cell activation. They also reveal changes consistent with agonist-induced conversion of InsP5 to its dephosphorylated metabolite, Ins-1,4,5,6-P4, during short-term stimulation by AII.  相似文献   
55.
A family of expression plasmid vectors were constructed by fusing the strong P2 promoter of the rrnB gene of Escherichia coli (coding for ribosomal RNA) to the lac operator, thereby eliminating regulatory sequences from the rrnB gene and placing the expression under lac repressor control. This promoter proved to be stronger in vivo than the well-known consensus tac promoter, and its strength could be further increased by converting the sequence to consensus. The stability of the recombinant proteins could be increased by fusion to various lengths of the N-terminal end of beta-galactosidase, or by inserting a synthetic oligonucleotide, coding for heptathreonine. A new method was developed for the stabilization of recombinant plasmids without antibiotic selection, based on the presence of an essential gene on the plasmid and its absence from the chromosome. The application of this method is illustrated by the example of a plasmid expressing human proinsulin.  相似文献   
56.
The effect of Legalon was investigated parallel with that of Adriblastina (doxorubicin) and paracetamol on some parameters characterizing the free radical scavenger mechanisms of human erythrocytes in vitro and on the time of acid hemolysis performed in aggregometer. Observations suggest that Adriblastina enhances the lipid peroxidation of the membrane of red blood cells, while paracetamol causes significant depletion of intracellular glutathione level, thus decreasing the free radical eliminating capacity of the glutathione peroxidase system. Legalon on the other hand, is able to increase the activity of both superoxide dismutase and glutathione peroxidase, which may explain the protective effect of the drug against free radicals and also the stabilizing effect on the red blood cell membrane, shown by the increase of the time of full haemolysis.  相似文献   
57.
Vascular calcification is a frequent complication of atherosclerosis, diabetes and chronic kidney disease. In the latter group of patients, calcification is commonly seen in tunica media where smooth muscle cells (SMC) undergo osteoblastic transformation. Risk factors such as elevated phosphorus levels and vitamin D3 analogues have been identified. In the light of earlier observations by our group and others, we sought to inhibit SMC calcification via induction of ferritin. Human aortic SMC were cultured using β‐glycerophosphate with activated vitamin D3, or inorganic phosphate with calcium, and induction of alkaline phosphatase (ALP) and osteocalcin as well as accumulation of calcium were used to monitor osteoblastic transformation. In addition, to examine the role of vitamin D3 analogues, plasma samples from patients on haemodialysis who had received calcitriol or paricalcitol were tested for their tendency to induce calcification of SMC. Addition of exogenous ferritin mitigates the transformation of SMC into osteoblast‐like cells. Importantly, pharmacological induction of heavy chain ferritin by 3H‐1,2‐Dithiole‐3‐thione was able to inhibit the SMC transition into osteoblast‐like cells and calcification of extracellular matrix. Plasma samples collected from patients after the administration of activated vitamin D3 caused significantly increased ALP activity in SMC compared to the samples drawn prior to activated vitamin D3 and here, again induction of ferritin diminished the osteoblastic transformation. Our data suggests that pharmacological induction of ferritin prevents osteoblastic transformation of SMC. Hence, utilization of such agents that will cause enhanced ferritin synthesis may have important clinical applications in prevention of vascular calcification.  相似文献   
58.
The plasma-membrane receptors, coupling mechanisms, and effector enzymes that mediate target-cell activation by angiotensin II (AII) have been characterized in rat and bovine adrenal glomerulosa cells. The AII holoreceptor is a glycoprotein of Mr approximately 125,000 under non-denaturing conditions. Photoaffinity labeling of AII receptors with azido-AII derivatives has shown size heterogeneity among the AII binding sites between species and target tissues, with Mr values of 55,000 to 79,000. Such variations in molecular size probably reflect differences in carbohydrate content of the individual receptor sites. The adrenal AII receptor, like that in other tissues, is coupled to the inhibitory guanine nucleotide inhibitory protein (Ni). However, studies with pertussis toxin have shown that stimulation of aldosterone production by AII is not mediated by Ni but by a pertussis-insensitive nucleotide regulatory protein of unidentified nature. Although Ni is not involved in the stimulatory action of AII on steroidogenesis, it does mediate the inhibitory effects of high concentrations of AII upon aldosterone production. The actions of AII on adrenal cortical function are thus regulated by at least two guanine nucleotide regulatory proteins that are selectively activated by increasing AII concentrations. The principal effector enzyme in AII action is phospholipase C, which is rapidly stimulated in rat and bovine glomerulosa after AII receptor activation. AII-induced breakdown of phosphatidylinositol bisphosphate (PIP2) and phosphatidylinositol phosphate (PIP) leads to formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2). These are metabolized predominantly to inositol-4-monophosphate, which serves as a marker of polyphosphoinositide breakdown, whereas inositol-1-phosphate is largely derived from phosphatidylinositol hydrolysis. The AII-stimulated glomerulosa cell also produces inositol 1,3,4-trisphosphate, a biologically inactive IP3 isomer formed from Ins-1,4,5-trisphosphate via inositol tetrakisphosphate (IP4) during ligand activation in several calcium-dependent target cells. The Ins-1,4,5-P3 formed during AII action binds with high affinity to specific intracellular receptors that have been characterized in the bovine adrenal gland and other AII target tissues, and may represent the sites through which IP3 causes calcium mobilization during the initiation of cellular responses.  相似文献   
59.
Activation of the cAMP messenger system was found to cause specific changes in angiotensin-II (All)-induced inositol phosphate production and metabolism in bovine adrenal glomerulosa cells. Pretreatment of [3H]inositol-labeled glomerulosa cells with 8-bromo-cAMP (8Br-cAMP) caused both short and long term changes in the inositol phosphate response to stimulation by All. Exposure to 8Br-cAMP initially caused dose-dependent enhancement (ED50 = 0.7 microM) of the stimulatory action of All (50 nM; 10 min) on the formation of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and its immediate metabolites. This effect of 8Br-cAMP was also observed in permeabilized [3H]inositol-labeled glomerulosa cells in which degradation of Ins(1,4,5)P3 was inhibited, consistent with increased activity of phospholipase-C. Continued exposure to 8Br-cAMP for 5-16 h caused selective enhancement of the All-induced increases in D-myo-inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4] and myo-inositol 1,4,5,6-tetrakisphosphate. The long term effect of 8Br-cAMP on the 6-phosphorylated InsP4 isomers, but not the initial enhancement of Ins(1,4,5)P3 formation, was inhibited by cycloheximide. The characteristic biphasic kinetics of All-induced Ins(1,4,5)P3 formation were also changed by prolonged treatment with 8Br-cAMP to a monophasic response in which Ins(1,4,5)P3 increased rapidly and remained elevated during All stimulation. In permeabilized glomerulosa cells treated with 8Br-cAMP for 16 h, the conversion of D-myo-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] to Ins(1,3,4,6)P4 was consistently increased, whereas dephosphorylation of Ins(1,4,5)P3 to D-myo-inositol 1,4-bisphosphate and of D-myo-inositol 1,3,4,5-tetrakisphosphate to Ins(1,3,4)P3, was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
60.
The intra-arterial infusion of hydrogen peroxide has been used as a method for producing a hyperoxic environment in experimental animals for the treatment of experimentally induced clostridial myositis. Eighty-five rabbits were employed in this study; 43 were controls and 42 were experimental animals. In the experimental study, 21 animals were treated with hydrogen peroxide by each route of administration. In this group, 52.4% of the animals receiving the intra-arterial infusion and 66.6% receiving intramuscular clysis survived. There were no survivors past 72 hr in the control group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号