首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15364篇
  免费   1458篇
  国内免费   2篇
  16824篇
  2023年   51篇
  2022年   149篇
  2021年   298篇
  2020年   148篇
  2019年   224篇
  2018年   283篇
  2017年   244篇
  2016年   505篇
  2015年   789篇
  2014年   840篇
  2013年   1013篇
  2012年   1281篇
  2011年   1142篇
  2010年   749篇
  2009年   728篇
  2008年   915篇
  2007年   938篇
  2006年   871篇
  2005年   852篇
  2004年   796篇
  2003年   789篇
  2002年   748篇
  2001年   144篇
  2000年   89篇
  1999年   157篇
  1998年   196篇
  1997年   144篇
  1996年   118篇
  1995年   125篇
  1994年   114篇
  1993年   111篇
  1992年   102篇
  1991年   82篇
  1990年   78篇
  1989年   65篇
  1988年   65篇
  1987年   50篇
  1986年   63篇
  1985年   68篇
  1984年   83篇
  1983年   46篇
  1982年   76篇
  1981年   56篇
  1980年   62篇
  1979年   41篇
  1977年   34篇
  1976年   23篇
  1974年   30篇
  1972年   22篇
  1971年   22篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Two biochemical deficits have been described in the substantia nigra in Parkinson's disease, decreased activity of mitochondrial complex I and reduced proteasomal activity. We analysed interactions between these deficits in primary mesencephalic cultures. Proteasome inhibitors (epoxomicin, MG132) exacerbated the toxicity of complex I inhibitors [rotenone, 1-methyl-4-phenylpyridinium (MPP+)] and of the toxic dopamine analogue 6-hydroxydopamine, but not of inhibitors of mitochondrial complex II-V or excitotoxins [N-methyl-d-aspartate (NMDA), kainate]. Rotenone and MPP+ increased free radicals and reduced proteasomal activity via adenosine triphosphate (ATP) depletion. 6-hydroxydopamine also increased free radicals, but did not affect ATP levels and increased proteasomal activity, presumably in response to oxidative damage. Proteasome inhibition potentiated the toxicity of rotenone, MPP+ and 6-hydroxydopamine at concentrations at which they increased free radical levels >/= 40% above baseline, exceeding the cellular capacity to detoxify oxidized proteins reduced by proteasome inhibition, and also exacerbated ATP depletion caused by complex I inhibition. Consistently, both free radical scavenging and stimulation of ATP production by glucose supplementation protected against the synergistic toxicity. In summary, proteasome inhibition increases neuronal vulnerability to normally subtoxic levels of free radicals and amplifies energy depletion following complex I inhibition.  相似文献   
992.
Kaposi's sarcoma (KS) and lymphoproliferative diseases induced by KS-associated herpesvirus (KSHV/human herpesvirus 8) cause substantial morbidity and mortality in human immunodeficiency virus-infected individuals. To understand KSHV biology it is useful to investigate closely related rhadinoviruses naturally occurring in nonhuman primates. Here we report evidence for a novel KSHV homolog in captive baboon species (Papio anubis and other). Using degenerate PCR we identified a novel rhadinovirus, PapRV2, that has substantial sequence identity to two essential KSHV genes, the viral polymerase and thymidylate synthase. A subset of animals exhibited detectable PapRV2 viral load in peripheral blood mononuclear cells. Extensive serological analysis of nearly 200 animals in the colony demonstrated that the majority carried cross-reacting antibodies that recognize KSHV or macaque rhadinovirus antigens. Seroreactivity increased with age, similar to the age-specific prevalence of KSHV in the human population. This establishes baboons as a novel resource to investigate rhadinovirus biology, which can be developed into an animal model system for KSHV-associated human diseases, vaccine development, and therapy evaluation.  相似文献   
993.
Norwalk virus (NV) is the prototype strain of a group of noncultivable human caliciviruses responsible for epidemic outbreaks of acute gastroenteritis. The capsid protein VP1 is synthesized from a subgenomic RNA that contains two open reading frames (ORFs), ORF2 and ORF3, and the 3' untranslated region (UTR). ORF2 and ORF3 code for the capsid protein (VP1) and a small structural basic protein (VP2), respectively. We discovered that the yields of virus-like particles (VLPs) composed of VP1 are significantly reduced when this protein is expressed from ORF2 alone. To determine how the 3' terminus of the NV subgenomic RNA regulates VP1 expression, we compared VP1 expression levels by using recombinant baculovirus constructs containing different 3' elements. High VP1 levels were detected by using a recombinant baculovirus that contained ORF2, ORF3, and the 3'UTR (ORF2+3+3'UTR). In contrast, expression of VP1 from constructs that lacked the 3'UTR (ORF2+3), ORF3 (ORF2+3'UTR), or both (ORF2 alone) was highly reduced. Elimination of VP2 synthesis from the subgenomic RNA by mutation resulted in VP1 levels similar to those obtained with the ORF2 construct alone, suggesting a cis role for VP2 in upregulation of VP1 expression levels. Comparisons of the kinetics of RNA and capsid protein expression levels by using constructs with or without ORF3 or the 3'UTR revealed that the 3'UTR increased the levels of VP1 RNA, whereas the presence of VP2 resulted in increased levels of VP1. Furthermore, VP2 increased VP1 stability and protected VP1 from disassembly and protease degradation. The increase in VP1 expression levels caused by the presence of VP2 in cis was also observed in mammalian cells.  相似文献   
994.
Initiation of protein synthesis in mitochondria and chloroplasts is widely believed to require a formylated initiator methionyl-tRNA (fMet-tRNAfMet) in a process involving initiation factor 2 (IF2). However, yeast strains disrupted at the FMT1 locus, encoding mitochondrial methionyl-tRNA formyltransferase, lack detectable fMet-tRNAfMet but exhibit normal mitochondrial function as evidenced by normal growth on non-fermentable carbon sources. Here we show that mitochondrial translation products in Saccharomyces cerevisiae were synthesized in the absence of formylated initiator tRNA. ifm1 mutants, lacking the mitochondrial initiation factor 2 (mIF2), are unable to respire, indicative of defective mitochondrial protein synthesis, but their respiratory defect could be complemented by plasmid-borne copies of either the yeast IFM1 gene or a cDNA encoding bovine mIF2. Moreover, the bovine mIF2 sustained normal respiration in ifm1 fmt1 double mutants. Bovine mIF2 supported the same pattern of mitochondrial translation products as yeast mIF2, and the pattern did not change in cells lacking formylated Met-tRNAfMet. Mutant yeast lacking any mIF2 retained the ability to synthesize low levels of a subset of mitochondrially encoded proteins. The ifm1 null mutant was used to analyze the domain structure of yeast mIF2. Contrary to a previous report, the C terminus of yeast mIF2 is required for its function in vivo, whereas the N-terminal domain could be deleted. Our results indicate that formylation of initiator methionyl-tRNA is not required for mitochondrial protein synthesis. The ability of bovine mIF2 to support mitochondrial translation in the yeast fmt1 mutant suggests that this phenomenon may extend to mammalian mitochondria as well.  相似文献   
995.
Kv4 potassium channels regulate action potentials in neurons and cardiac myocytes. Co-expression of EF hand-containing Ca2+-binding proteins termed KChIPs with pore-forming Kv4 alpha subunits causes changes in the gating and amplitude of Kv4 currents (An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000) Nature 403, 553-556). Here we show that KChIPs profoundly affect the intracellular trafficking and molecular properties of Kv4.2 alpha subunits. Co-expression of KChIPs1-3 causes a dramatic redistribution of Kv4.2, releasing intrinsic endoplasmic reticulum retention and allowing for trafficking to the cell surface. KChIP co-expression also causes fundamental changes in Kv4.2 steady-state expression levels, phosphorylation, detergent solubility, and stability that reconstitute the molecular properties of Kv4.2 in native cells. Interestingly, the KChIP4a isoform, which exhibits unique effects on Kv4 channel gating, does not exert these effects on Kv4.2 and negatively influences the impact of other KChIPs. We provide evidence that these KChIP effects occur through the masking of an N-terminal Kv4.2 hydrophobic domain. These studies point to an essential role for KChIPs in determining both the biophysical and molecular characteristics of Kv4 channels and provide a molecular basis for the dramatic phenotype of KChIP knockout mice.  相似文献   
996.
Cells are continuously exposed to oxidative species, which cause several types of oxidative DNA lesions. Repair of some of these lesions has been well characterized but little is known about the repair of many DNA lesions. The oxidized adenine base, 7,8-dihydro-8-oxoadenine (8-oxoA), is a relatively common DNA lesion, which is believed to be mutagenic in mammalian cells. This study investigates repair of 8-oxoA in nuclear and mitochondrial mammalian extracts. In nuclei, 8-oxoA:C and 8-oxoA:G base pairs are recognized and cleaved; in contrast, only 8-oxoA:C base pairs are cleaved in mitochondria. High stability of the DNA helix increased the efficiency of incision of 8-oxoA, and the efficiency decreased at DNA bends and condensed regions of the helix. Using liver extracts from mice knocked out for 8-oxoguanine DNA glycosylase 1 (OGG1), we demonstrated that OGG1 is the only glycosylase that incises 8-oxoA, when base-paired with cytosine in mitochondria and nuclei, but a different enzyme incises 8-oxoA when base-paired with guanine in the nucleus. Consistent with this result, a covalent DNA-protein complex was trapped using purified human OGG1 or human nuclear or mitochondrial extracts with a DNA substrate containing an 8-oxoA:C base pair.  相似文献   
997.
Before fertilization can occur, mammalian sperm must undergo capacitation, a process that requires a cyclic AMP-dependent increase in tyrosine phosphorylation. To identify proteins phosphorylated during capacitation, two-dimensional gel analysis coupled to anti-phosphotyrosine immunoblots and tandem mass spectrometry (MS/MS) was performed. Among the protein targets, valosin-containing protein (VCP), a homolog of the SNARE-interacting protein NSF, and two members of the A kinase-anchoring protein (AKAP) family were found to be tyrosine phosphorylated during capacitation. In addition, immobilized metal affinity chromatography was used to investigate phosphorylation sites in whole protein digests from capacitated human sperm. To increase this chromatographic selectivity for phosphopeptides, acidic residues in peptide digests were converted to their respective methyl esters before affinity chromatography. More than 60 phosphorylated sequences were then mapped by MS/MS, including precise sites of tyrosine and serine phosphorylation of the sperm tail proteins AKAP-3 and AKAP-4. Moreover, differential isotopic labeling was developed to quantify phosphorylation changes occurring during capacitation. The phosphopeptide enrichment and quantification methodology coupled to MS/MS, described here for the first time, can be employed to map and compare phosphorylation sites involved in multiple cellular processes. Although we were unable to determine the exact site of phosphorylation of VCP, we did confirm, using a cross-immunoprecipitation approach, that this protein is tyrosine phosphorylated during capacitation. Immunolocalization of VCP showed fluorescent staining in the neck of noncapacitated sperm. However, after capacitation, staining in the neck decreased, and most of the sperm showed fluorescent staining in the anterior head.  相似文献   
998.
The dynamic processes of cell migration and invasion are largely coordinated by Rho family GTPases. The scaffolding protein IQGAP1 binds to Cdc42, increasing the amount of active Cdc42 both in vitro and in cells. Here we show that overexpression of IQGAP1 in mammalian cells enhances cell migration in a Cdc42- and Rac1-dependent manner. Importantly, cell motility was significantly decreased both by knock down of endogenous IQGAP1 using small interfering RNA and by transfection of a dominant negative IQGAP1 construct, IQGAP1DeltaGRD. Cell invasion was similarly altered by manipulating intracellular IQGAP1 concentrations. Moreover, invasion mediated by constitutively active Cdc42 was attenuated by IQGAP1DeltaGRD. Thus, IQGAP1 has a fundamental role in cell motility and invasion.  相似文献   
999.
We demonstrate that POSH, a scaffold for the JNK signaling pathway, binds to Akt2. A POSH mutant that is unable to bind Akt2 (POSH W489A) exhibits enhanced-binding to MLK3, and this increase in binding is accompanied by increased activation of the JNK signaling pathway. In addition, we show that the association of MLK3 with POSH is increased upon inhibition of the endogenous phosphatidylinositol 3-kinase/Akt signaling pathway. Thus, the assembly of an active JNK signaling complex by POSH is negatively regulated by Akt2. Further, the level of Akt-phosphorylated MLK3 is reduced in cells expressing the Akt2 binding domain of POSH, which acts as a dominant interfering protein. Taken together, our results support a model in which Akt2 binds to a POSH-MLK-MKK-JNK complex and phosphorylates MLK3; phosphorylation of MLK3 by Akt2 results in the disassembly of the JNK complex bound to POSH and down-regulation of the JNK signaling pathway.  相似文献   
1000.
The perilipins are the most abundant proteins coating the surfaces of lipid droplets in adipocytes and are found at lower levels surrounding lipid droplets in steroidogenic cells. Perilipins drive triacylglycerol storage in adipocytes by regulating the rate of basal lipolysis and are also required to maximize hormonally stimulated lipolysis. To map the domains that target and anchor perilipin A to lipid droplets, we stably expressed fragments of perilipin A in 3T3-L1 fibroblasts. Immunofluorescence microscopy and immunoblotting of proteins from isolated lipid droplets revealed that neither the amino nor the carboxyl terminus is required to target perilipin A to lipid droplets; however, there are multiple, partially redundant targeting signals within a central domain including 25% of the primary amino acid sequence. A peptide composed of the central domain of perilipin A directed a fused green fluorescent protein to the surfaces of lipid droplets. Full-length perilipin A associates with lipid droplets via hydrophobic interactions, as shown by the persistence of perilipins on lipid droplets after centrifugation through an alkaline carbonate solution. Results of the mutagenesis studies indicate that the sequences responsible for anchoring perilipin A to lipid droplets are most likely domains of moderately hydrophobic amino acids located within the central 25% of the protein. Thus, we conclude that the central 25% of the perilipin A sequence contains all of the amino acids necessary to target and anchor the protein to lipid droplets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号