首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   75篇
  315篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   8篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   11篇
  2014年   14篇
  2013年   19篇
  2012年   14篇
  2011年   19篇
  2010年   6篇
  2009年   11篇
  2008年   15篇
  2007年   19篇
  2006年   15篇
  2005年   13篇
  2004年   18篇
  2003年   8篇
  2002年   11篇
  2001年   10篇
  2000年   8篇
  1999年   11篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   7篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
  1966年   1篇
  1960年   2篇
  1927年   1篇
排序方式: 共有315条查询结果,搜索用时 0 毫秒
201.
RISCy business: MicroRNAs, pathogenesis, and viruses   总被引:5,自引:0,他引:5  
  相似文献   
202.
203.
204.
HIV-1 particles contain RNA species other than the unspliced viral RNA genome. For instance, viral spliced RNAs and host 7SL and U6 RNAs are natural components that are non-randomly incorporated. To understand the mechanism of packaging selectivity, we analyzed the content of a large panel of HIV-1 variants mutated either in the 5'UTR structures of the viral RNA or in the Gag-nucleocapsid protein (GagNC). In parallel, we determined whether the selection of host 7SL and U6 RNAs is dependent or not on viral RNA and/or GagNC. Our results reveal that the polyA hairpin in the 5'UTR is a major packaging determinant for both spliced and unspliced viral RNAs. In contrast, 5'UTR RNA structures have little influence on the U6 and 7SL RNAs, indicating that packaging of these host RNAs is independent of viral RNA packaging. Experiments with GagNC mutants indicated that the two zinc-fingers and N-terminal basic residues restrict the incorporation of the spliced RNAs, while favoring unspliced RNA packaging. GagNC through the zinc-finger motifs also restricts the packaging of 7SL and U6 RNAs. Thus, GagNC is a major contributor to the packaging selectivity. Altogether our results provide new molecular insight on how HIV selects distinct RNA species for incorporation into particles.  相似文献   
205.

Introduction  

Cardiovascular disease (CVD) is the leading cause of death in patients with inflammatory polyarthritis (IP), especially in seropositive disease. In established rheumatoid arthritis (RA), insulin resistance (IR) is increased and associated with CVD. We investigated factors associated with IR in an inception cohort of patients with early IP.  相似文献   
206.
Orthohepadnavirus (mammalian hosts) and avihepadnavirus (avian hosts) constitute the family of Hepadnaviridae and differ by their capability and inability for expression of protein X, respectively. Origin and functions of X are unclear. The evolutionary analysis at issue of X indicates that present strains of orthohepadnavirus started to diverge about 25,000 years ago, simultaneously with the onset of avihepadnavirus diversification. These evolutionary events were preceded by a much longer period during which orthohepadnavirus developed a functional protein X while avihepadnavirus evolved without X. An in silico generated 3D-model of orthohepadnaviral X protein displayed considerable similarity to the tertiary structure of DNA glycosylases (key enzymes of base excision DNA repair pathways). Similarity is confined to the central domain of MUG proteins with the typical DNA-binding facilities but without the capability of DNA glycosylase enzymatic activity. The hypothetical translation product of a vestigial X reading frame in the genome of duck hepadnavirus could also been folded into a DNA glycosylase-like 3D-structure. In conclusion, the most recent common ancestor of ortho- and avihepadnavirus carried an X sequence with orthology to the central domain of DNA glycosylase.  相似文献   
207.
Peptides based on the second heptad repeat (HR2) of viral class I fusion proteins are effective inhibitors of virus entry. One such fusion inhibitor has been approved for treatment of human immunodeficiency virus-1 (T20, enfuvirtide). Resistance to T20 usually maps to the peptide binding site in HR1. To better understand fusion inhibitor potency and resistance, we combined virological, computational, and biophysical experiments with comprehensive mutational analyses and tested resistance to T20 and second and third generation inhibitors (T1249 and T2635). We found that most amino acid substitutions caused resistance to the first generation peptide T20. Only charged amino acids caused resistance to T1249, and none caused resistance to T2635. Depending on the drug, we can distinguish four mechanisms of drug resistance: reduced contact, steric obstruction, electrostatic repulsion, and electrostatic attraction. Implications for the design of novel antiviral peptide inhibitors are discussed.The HIV-1 envelope glycoprotein complex (Env),3 a class I viral fusion protein, is responsible for viral attachment to CD4+ target T cells and subsequent fusion of viral and cellular membranes resulting in release of the viral core in the cell. Other examples of viruses using class I fusion proteins are Coronaviridae (severe acute respiratory syndrome virus), Paramyxoviridae (Newcastle disease virus, human respiratory syncytial virus, Nipah virus, Hendra virus), and Orthomyxoviridae (influenza virus), some of which cause fatal diseases in humans (13). The entry process of these viruses is an attractive target for therapeutic intervention.The functional trimeric Env spike on HIV-1 virions consists of three gp120 and three gp41 molecules that are the products of cleavage of the precursor gp160 by cellular proteases such as furin (4, 5). The gp120 surface subunits are responsible for binding to the cellular receptors, whereas the gp41 subunits anchor the complex in the viral membrane and mediate the fusion of viral and cellular membranes. Env undergoes several conformational changes that culminate in membrane fusion. The gp120 subunit binds the CD4 receptor, resulting in creation and/or exposure of the binding site for a coreceptor, usually CCR5 or CXCR4 (6, 7). Two α-helical leucine zipper-like motifs, heptad repeat 1 (HR1) and heptad repeat 2 (HR2), located in the extracellular part of gp41, play a major role in the following conformational changes. Binding of the receptors to gp120 induces formation of the pre-hairpin intermediate of gp41 in which HR1 is exposed and the N-terminal fusion peptide is inserted into the target cell membrane (1, 812). Subsequently, three HR1 and three HR2 domains assemble into a highly stable six-helix bundle structure that juxtaposes the viral and cellular membranes for the membrane merger. Other viruses with class I viral fusion proteins use similar HR1-HR2-mediated membrane fusion for target cell entry.Peptides based on the HR domains of class I viral fusion proteins have proven to be efficient inhibitors of virus entry for a broad range of viruses (1317). The HIV-1 fusion inhibitor T20 (enfuvirtide (Fuzeon)) has been approved for clinical use. T20 mimics HR2 and can bind to HR1, thereby preventing the formation of the six-helix bundle (Fig. 1) (1821). T1249 is a second-generation fusion inhibitor with improved antiviral potency compared with the first-generation peptide T20 (2225). Recently, a series of more potent third-generation fusion inhibitors were designed (26, 27). These include T2635, which has an improved helical structure that increases stability and activity against both wild type (WT) HIV-1 and fusion inhibitor resistant variants.Open in a separate windowFIGURE 1.Schematic of the gp41 ectodomain. HR1 and HR2 are represented as cylinders, and position 38 in HR1 is indicated. Residues Gln-142, Asn-145, Glu-146, and Leu-149, which interact with residue 38, are underlined in the HR2 sequence. HR2-based peptide fusion inhibitors are shown underneath. Mutations introduced in T1249mut and T2635mut are bold and underlined. Numbering is based on the sequence of HXB2 gp41.Both the in vitro and in vivo selection of resistance has been described for T20 (2833) and T1249 (23, 3436). Resistance is often caused by mutations in the HR1 binding site of the fusion inhibitor. In particular, substitutions at positions 36 (G36D/M/S), 38 (V38A/W/M/E), and 43 (N43D/K) of gp41 can cause resistance. Strikingly, substitutions at position 38 can cause resistance to both T20 and T1249, but distinct amino acid substitutions are required. At position 38 only charged amino acids (V38E/R/K) cause resistance to T1249 (35). Surprisingly, none of the known T20 and T1249 resistance mutations at position 38 affect the susceptibility to the third generation inhibitor T2635.We hypothesized that the use of HIV-1 as a model system could provide a more detailed understanding of resistance to fusion inhibitors. We, therefore, analyzed the effect of all 20 amino acids at resistance hotspot 38 on Env function, viral fitness, biochemical properties of gp41, and resistance to the fusion inhibitors. From the results we can propose four resistance mechanisms that differ in the way the drug-target interaction is affected at the molecular level. Furthermore, we can deduce general principles on the mechanisms of resistance against fusion inhibitors and the requirements for effective antiviral drugs.  相似文献   
208.
209.
An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these cells, would improve Env-specific antibody responses. Therefore, we fused trimeric Env gp140 to A PRoliferation-Inducing Ligand (APRIL), B-cell Activating Factor (BAFF), and CD40 Ligand (CD40L). The Env-APRIL, Env-BAFF, and Env-CD40L gp140 trimers all enhanced the expression of activation-induced cytidine deaminase (AID), the enzyme responsible for inducing somatic hypermutation, antibody affinity maturation, and antibody class switching. They also triggered IgM, IgG, and IgA secretion from human B cells in vitro. The Env-APRIL trimers induced higher anti-Env antibody responses in rabbits, including neutralizing antibodies against tier 1 viruses. The enhanced Env-specific responses were not associated with a general increase in total plasma antibody concentrations, indicating that the effect of APRIL was specific for Env. All the rabbit sera raised against gp140 trimers, irrespective of the presence of CD40L, BAFF, or APRIL, recognized trimeric Env efficiently, whereas sera raised against gp120 monomers did not. The levels of trimer-binding and virus-neutralizing antibodies were strongly correlated, suggesting that gp140 trimers are superior to gp120 monomers as immunogens. Targeting and activating B cells with a trimeric HIV-1 Env-APRIL fusion protein may therefore improve the induction of humoral immunity against HIV-1.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号