首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4027篇
  免费   321篇
  4348篇
  2023年   23篇
  2022年   29篇
  2021年   60篇
  2020年   45篇
  2019年   51篇
  2018年   53篇
  2017年   57篇
  2016年   103篇
  2015年   187篇
  2014年   213篇
  2013年   202篇
  2012年   307篇
  2011年   294篇
  2010年   225篇
  2009年   174篇
  2008年   251篇
  2007年   222篇
  2006年   227篇
  2005年   211篇
  2004年   210篇
  2003年   200篇
  2002年   220篇
  2001年   31篇
  2000年   22篇
  1999年   44篇
  1998年   55篇
  1997年   43篇
  1996年   41篇
  1995年   36篇
  1994年   34篇
  1993年   41篇
  1992年   26篇
  1991年   29篇
  1990年   15篇
  1989年   36篇
  1988年   28篇
  1987年   17篇
  1986年   18篇
  1985年   10篇
  1984年   21篇
  1983年   17篇
  1982年   25篇
  1981年   18篇
  1980年   14篇
  1979年   14篇
  1978年   15篇
  1977年   14篇
  1976年   13篇
  1974年   14篇
  1973年   14篇
排序方式: 共有4348条查询结果,搜索用时 25 毫秒
991.
Dual-oscillator systems that control morning and evening activities can be found in a wide range of animals. The two coupled oscillators track dawn and dusk and flexibly adapt their phase relationship to seasonal changes. This is also true for the fruit fly Drosophila melanogaster that serves as model organism to understand the molecular and anatomical bases of the dual-oscillator system. In the present study, the authors investigated which temperature parameters are crucial for timing morning and evening activity peaks by applying natural-like temperature cycles with different daylengths. The authors found that the morning peak synchronizes to the temperature increase in the morning and the evening peak to the temperature decrease in the afternoon. The two peaks did not occur at fixed absolute temperatures, but responded flexibly to daylength and overall temperature level. Especially, the phase of the evening peak clearly depended on the absolute temperature level: it was delayed at high temperatures, whereas the phase of the M peak was less influenced. This suggests that the two oscillators have different temperature sensitivities. The bimodal activity rhythm was absent in the circadian clock mutants Clk(Jrk) and cyc(01) and reduced in per(01) and tim(01) mutants. Whereas the activity of Clk(Jrk) mutants just followed the temperature cycles, that of per(01) and tim(01) mutants did not, suggesting that these mutants are not completely clockless. This study revealed new characteristics of the dual-oscillator system in Drosophila that were not detected under different photoperiods.  相似文献   
992.
Amyloid β peptides (Aβ) have been implicated in the pathogenesis of age-related macular degeneration (ARMD) and glaucoma. In this study, retinas of mice overexpressing Aβ (Tg) were compared to those of wild-type mice (Wt) and analyzed for oxidative stress parameters. We observed a progressive decrease in all retinal cell layers, which was significantly greater in Tg mice at 14 months and culminated in loss of the outer retina at 18 months of age. We also observed higher levels of reactive oxygen species, glial fibrillary acidic protein, and hydroperoxide in Tg versus Wt mice (14 months). These effects were associated with phosphorylation/activation of the apoptosis signal kinase 1 and the p38 mitogen-activated kinase. Western blotting analysis revealed progressive increases in the levels of thioredoxin 1 and thioredoxin inhibitory protein in Tg compared to Wt mice. No changes were observed in the levels of thioredoxin reductase 1 (TrxR1); however, measurements of TrxR1 activity showed a 42.7±8% reduction in Tg mice versus Wt at 14 months of age. Our data suggest that Aβ-mediated retinal neurotoxicity involves impairment of the thioredoxin system and enhanced oxidative stress, potentially implicating this mechanism in the pathogenesis of ARMD and glaucoma.  相似文献   
993.
994.
In the central nervous system, clathrin-mediated endocytosis is crucial for efficient synaptic transmission. Clathrin-coated vesicle assembly and disassembly is regulated by some 30 adaptor and accessory proteins, most of which interact with clathrin heavy chain. Using the calcyon cytosolic domain as bait, we isolated clathrin light chain in a yeast two-hybrid screen. The interaction domain was mapped to the heavy chain binding domain and C-terminal regions of light chain. Further, the addition of the calcyon C terminus stimulated clathrin self-assembly in a dose-dependent fashion. Calcyon, which is a single transmembrane protein predominantly expressed in brain, localized to vesicular compartments within pre- and postsynaptic structures. There was a high degree of overlap in the distribution of LC and calcyon in neuronal dendrites, spines, and cell bodies. Co-immunoprecipitation studies further suggested an association of calcyon with the clathrin-mediated endocytic machinery. Compared with controls, HEK293 cells overexpressing calcyon exhibited significantly enhanced transferrin uptake but equivalent levels of recycling. Conversely, transferrin uptake was largely abolished in neocortical neurons obtained from mice homozygous for a calcyon null allele, whereas recycling proceeded at wild type levels. Collectively, these data indicate a role for calcyon in clathrin-mediated endocytosis in brain.  相似文献   
995.
A comprehensive, unbiased inventory of synuclein forms present in Lewy bodies from patients with dementia with Lewy bodies was carried out using two-dimensional immunoblot analysis, novel sandwich enzyme-linked immunosorbent assays with modification-specific synuclein antibodies, and mass spectroscopy. The predominant modification of alpha-synuclein in Lewy bodies is a single phosphorylation at Ser-129. In addition, there is a set of characteristic modifications that are present to a lesser extent, including ubiquitination at Lys residues 12, 21, and 23 and specific truncations at Asp-115, Asp-119, Asn-122, Tyr-133, and Asp-135. No other modifications are detectable by tandem mass spectrometry mapping, except for a ubiquitous N-terminal acetylation. Small amounts of Ser-129 phosphorylated and Asp-119-truncated alpha-synuclein are present in the soluble fraction of both normal and disease brains, suggesting that these Lewy body-associated forms are produced during normal metabolism of alpha-synuclein. In contrast, ubiquitination is only detected in Lewy bodies and is primarily present on phosphorylated synuclein; it therefore likely occurs after phosphorylated synuclein has deposited into Lewy bodies. This invariant pattern of specific phosphorylation, truncation, and ubiquitination is also present in the detergent-insoluble fraction of brain from patients with familial Parkinson's disease (synuclein A53T mutation) as well as multiple system atrophy, suggesting a common pathogenic pathway for both genetic and sporadic Lewy body diseases. These observations are most consistent with a model in which preferential accumulation of normally produced Ser-129 phosphorylated alpha-synuclein is the key event responsible for the formation of Lewy bodies in various Lewy body diseases.  相似文献   
996.
The maintenance of DNA replication fork stability under conditions of DNA damage and at natural replication pause sites is essential for genome stability. Here, we describe a novel role for the F-box protein Dia2 in promoting genome stability in the budding yeast Saccharomyces cerevisiae. Like most other F-box proteins, Dia2 forms a Skp1-Cdc53/Cullin-F-box (SCF) E3 ubiquitin–ligase complex. Systematic analysis of genetic interactions between dia2Δ and ~4400 viable gene deletion mutants revealed synthetic lethal/synthetic sick interactions with a broad spectrum of DNA replication, recombination, checkpoint, and chromatin-remodeling pathways. dia2Δ strains exhibit constitutive activation of the checkpoint kinase Rad53 and elevated counts of endogenous DNA repair foci and are unable to overcome MMS-induced replicative stress. Notably, dia2Δ strains display a high rate of gross chromosomal rearrangements (GCRs) that involve the rDNA locus and an increase in extrachromosomal rDNA circle (ERC) formation, consistent with an observed enrichment of Dia2 in the nucleolus. These results suggest that Dia2 is essential for stable passage of replication forks through regions of damaged DNA and natural fragile regions, particularly the replication fork barrier (RFB) of rDNA repeat loci. We propose that the SCFDia2 ubiquitin ligase serves to modify or degrade protein substrates that would otherwise impede the replication fork in problematic regions of the genome.  相似文献   
997.
The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a central role in T cell activation and T cell development. SLP-76 has three functional modules: an acidic domain with three key tyrosines, a central proline-rich domain, and a C-terminal Src homology 2 domain. Of these, mutation of the three N-terminal tyrosines (Y112, Y128, and Y145) results in the most profound effects on T cell development and function. Y112 and Y128 associate with Vav and Nck, two proteins shown to be important for TCR-induced phosphorylation of proximal signaling substrates, Ca(2+) flux, and actin reorganization. Y145 has been shown to be important for optimal association of SLP-76 with inducible tyrosine kinase, a key regulator of T cell function. To investigate further the role of the phosphorylatable tyrosines of SLP-76 in TCR signaling, cell lines and primary T cells expressing SLP-76 with mutations in individual or paired tyrosine residues were analyzed. These studies show that Tyr(145) of SLP-76 is the most critical tyrosine for both T cell function in vitro and T cell development in vivo.  相似文献   
998.
Macrophage migration inhibitory factor (MIF) was originally identified for its ability to inhibit the random migration of macrophages in vitro. MIF is now recognized as an important mediator in a range of inflammatory disorders. We recently observed that the absence of MIF is associated with a reduction in leukocyte-endothelial cell interactions induced by a range of inflammatory mediators, suggesting that one mechanism whereby MIF acts during inflammatory responses is by promoting leukocyte recruitment. However, it is unknown whether MIF is capable of inducing leukocyte recruitment independently of additional inflammatory stimuli. In this study, we report that MIF is capable of inducing leukocyte adhesion and transmigration in postcapillary venules in vivo. Moreover, leukocytes recruited in response to MIF were predominantly CD68(+) cells of the monocyte/macrophage lineage. Abs against the monocyte-selective chemokine CCL2 (JE/MCP-1) and its receptor CCR2, but not CCL3 and CXCL2, significantly inhibited MIF-induced monocyte adhesion and transmigration. CCL2(-/-) mice displayed a similar reduction in MIF-induced recruitment indicating a critical role of CCL2 in the MIF-induced response. This hypothesis was supported by findings that MIF induced CCL2 release from primary microvascular endothelial cells. These data demonstrate a previously unrecognized function of this pleiotropic cytokine: induction of monocyte migration into tissues. This function may be critical to the ability of MIF to promote diseases such as atherosclerosis and rheumatoid arthritis, in which macrophages are key participants.  相似文献   
999.
OBJECTIVES: To define the link between the deletion of gene encoding for metalloproteinase 9 and resistance artery reactivity, we studied in vitro smooth muscle and endothelial cell function in response to pressure, shear stress, and pharmacological agents. BACKGROUND: Matrix metalloproteinases play a crucial role in the regulation of extracellular matrix turnover and structural artery wall remodeling. METHODS: Resistance arteries were isolated from mice lacking gene encoding for MMP-9 (KO) and their control (WT). Hemodynamic, pharmacology approaches, and Western blot analysis were used in this study. RESULTS: The measurement of blood pressure in vivo was similar in KO and WT mice. Pressure-induced myogenic tone, contractions to angiotensin-II and phenylephrine were similar in both groups. The inhibition of MMP2/9 ((2R)-2-[(4-biphenylylsulfonyl) amino]-3-phenylpropionic acid) significantly decreased myogenic tone in WT and had no effect in KO mice. Relaxation endothelium-dependent (flow-induced- dilation 41.3+/-0.6 vs. 21+/-1.6 at 10 microl/min in KO and WT mice, respectively, P<0.05) and eNOS expression were increased in KO compared to WT mice. The inhibition of eNOS with L-NAME significantly decreased endothelium response to shear stress, which was more pronounced in KO mice resistance arteries (-26.83+/-2.5 vs. -15.84+/-2.3 at 10 microl/min in KO and WT, respectively, P<0.05). However, the relaxation to exogenous nitric oxide-donor was similar in both groups. CONCLUSION: Our study provides evidence of a selective effect of MMP-9 on endothelium function. Thus, MMP-9 gene deletion specifically increased resistance artery dilation endothelium-dependent and eNOS expression. Based on our results, MMP-9 could be a potential therapeutic target in cardiovascular disease associated with resistance arteries dysfunction.  相似文献   
1000.
HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A(2) (PLA(2))/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca(2+)-mobilization and enhanced bradykinin-promoted Ca(2+)-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARgamma agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号