首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   26篇
  国内免费   1篇
  2022年   3篇
  2021年   6篇
  2019年   3篇
  2018年   8篇
  2017年   5篇
  2016年   9篇
  2015年   11篇
  2014年   18篇
  2013年   24篇
  2012年   23篇
  2011年   23篇
  2010年   18篇
  2009年   22篇
  2008年   24篇
  2007年   15篇
  2006年   22篇
  2005年   19篇
  2004年   17篇
  2003年   21篇
  2002年   14篇
  2001年   16篇
  2000年   15篇
  1999年   15篇
  1998年   9篇
  1997年   5篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   7篇
  1992年   9篇
  1991年   11篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1972年   4篇
  1970年   4篇
  1969年   2篇
  1963年   2篇
排序方式: 共有484条查询结果,搜索用时 15 毫秒
31.
32.

Context

Mathematical models may help the analysis of biological systems by providing estimates of otherwise un-measurable quantities such as concentrations and fluxes. The variability in such systems makes it difficult to translate individual characteristics to group behavior. Mixed effects models offer a tool to simultaneously assess individual and population behavior from experimental data. Lipoproteins and plasma lipids are key mediators for cardiovascular disease in metabolic disorders such as diabetes mellitus type 2. By the use of mathematical models and tracer experiments fluxes and production rates of lipoproteins may be estimated.

Results

We developed a mixed effects model to study lipoprotein kinetics in a data set of 15 healthy individuals and 15 patients with type 2 diabetes. We compare the traditional and the mixed effects approach in terms of group estimates at various sample and data set sizes.

Conclusion

We conclude that the mixed effects approach provided better estimates using the full data set as well as with both sparse and truncated data sets. Sample size estimates showed that to compare lipoprotein secretion the mixed effects approach needed almost half the sample size as the traditional method.  相似文献   
33.
Despite the critical role of pre-mRNA splicing in generating proteomic diversity and regulating gene expression, the sequence composition and function of intronic splicing regulatory elements (ISREs) have not been well elucidated. Here, we employed a high-throughput in vivo Screening PLatform for Intronic Control Elements (SPLICE) to identify 125 unique ISRE sequences from a random nucleotide library in human cells. Bioinformatic analyses reveal consensus motifs that resemble splicing regulatory elements and binding sites for characterized splicing factors and that are enriched in the introns of naturally occurring spliced genes, supporting their biological relevance. In vivo characterization, including an RNAi silencing study, demonstrate that ISRE sequences can exhibit combinatorial regulatory activity and that multiple trans-acting factors are involved in the regulatory effect of a single ISRE. Our work provides an initial examination into the sequence characteristics and function of ISREs, providing an important contribution to the splicing code.  相似文献   
34.
During dual-phase fermentations using Escherichia coli engineered for succinic acid production, the productivity and viable cell concentration decrease as the concentration of succinic acid increases. The effects of succinic acid on the fermentation kinetics, yield, and cell viability were investigated by resuspending cells in fresh media after selected fermentation times. The cellular succinic acid productivity could be restored, but cell viability continuously decreased throughout the fermentations by up to 80% and subsequently the volumetric productivity was reduced. Omitting complex nutrients in the resuspension media had no significant effect on cellular succinate productivity and yield, although the viable cell concentration and thus the volumetric productivity was reduced by approximately 20%. By resuspending the cells, the amount of succinate produced during a 100-h fermentation was increased by more than 60%. The results demonstrate that by product removal succinic acid productivity can be maintained at high levels for extended periods of time.  相似文献   
35.
36.
Plant cell walls combine mechanical stiffness, strength and toughness despite a highly hydrated state. Inspired by this, a nanostructured cellulose network is combined with an almost viscous polysaccharide matrix in the form of a 50/50 amylopectin-glycerol blend. Homogeneous films with a microfibrillated cellulose (MFC) nanofiber content in the range of 10-70 wt % are successfully cast. Characterization is carried out by dynamic mechanical analysis, field-emission scanning electron microscopy, X-ray diffraction, and mercury density measurements. The MFC is well dispersed and predominantly oriented random-in-the-plane. High tensile strength is combined with high modulus and very high work of fracture in the nanocomposite with 70 wt % MFC. The reasons for this interesting combination of properties include nanofiber and matrix properties, favorable nanofiber-matrix interaction, good dispersion, and the ability of the MFC network to maintain its integrity to a strain of at least 8%.  相似文献   
37.
38.
Melanocortin-4 receptor (MC4R) mutations cause dysregulation of energy balance and hyperinsulinemia. We have used mouse models to study the physiological roles of extrahypothalamic MC4Rs. Re-expression of MC4Rs in cholinergic neurons (ChAT-Cre, loxTB MC4R mice) modestly reduced body weight gain without altering food intake and was sufficient to normalize energy expenditure and attenuate hyperglycemia and hyperinsulinemia. In contrast, restoration of MC4R expression in brainstem neurons including those in the dorsal motor nucleus of the vagus (Phox2b-Cre, loxTB MC4R mice) was sufficient to attenuate hyperinsulinemia, while the hyperglycemia and energy balance were not normalized. Additionally, hepatic insulin action and insulin-mediated suppression of hepatic glucose production were improved in ChAT-Cre, loxTB MC4R mice. These findings suggest that MC4Rs expressed by cholinergic neurons regulate energy expenditure and hepatic glucose production. Our results also provide further evidence of the dissociation in pathways mediating the effects of melanocortins on energy balance and glucose homeostasis.  相似文献   
39.
The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5 °C) changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2 °C) affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task.  相似文献   
40.
In order to function in vivo, tissue engineered blood vessels (TEBVs) must encumber pulsatile blood flow and withstand hemodynamic pressures for long periods of time. To date TEBV mechanical assessment has typically relied on single time point burst and/or uniaxial tensile testing to gauge the strengths of the constructs. This study extends this analysis to include creep and stepwise stress relaxation viscoelastic testing methodologies. TEBV models exhibiting diverse mechanical behaviors as a result of different architectures ranging from reconstituted collagen gels to hybrid constructs reinforced with either untreated or glutaraldhyde-crosslinked collagen supports were evaluated after 8 and 23 days of in vitro culturing. Data were modeled using three and four-parameter linear viscoelastic mathematical representations and compared to porcine carotid arteries. While glutaraldhyde-treated hybrid TEBVs exhibited the largest overall strengths and toughness, uncrosslinked hybrid samples exhibited time-dependent behaviors most similar to native arteries. These findings emphasize the importance of viscoelastic characterization when evaluating the mechanical performance of TEBVs. Limits of testing methods and modeling systems are presented and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号