首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   19篇
  305篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   7篇
  2018年   3篇
  2016年   3篇
  2015年   13篇
  2014年   9篇
  2013年   14篇
  2012年   9篇
  2011年   15篇
  2010年   5篇
  2009年   5篇
  2008年   12篇
  2007年   9篇
  2006年   6篇
  2005年   13篇
  2004年   10篇
  2003年   13篇
  2002年   10篇
  2001年   20篇
  2000年   10篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1993年   2篇
  1992年   6篇
  1991年   9篇
  1990年   10篇
  1989年   11篇
  1988年   8篇
  1987年   9篇
  1986年   5篇
  1985年   5篇
  1983年   2篇
  1982年   5篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1924年   2篇
  1871年   2篇
  1869年   2篇
排序方式: 共有305条查询结果,搜索用时 0 毫秒
71.
With large-scale development of offshore wind farms, vertical structures are becoming more common in open water areas. To examine how vertical structures of different materials may be colonized by epibenthic organisms, an experiment was carried out using steel and concrete pilings constructed to resemble those commonly used in wind farm constructions as well as in bridges, jetties and oil platforms. The early recruitment and succession of the epibenthic communities were sampled once a month for the first 5 months and then again after 1 year. Further, the fish assemblages associated with the pillars were sampled and compared to natural areas. The main epibenthic species groups, in terms of coverage, differed between the two materials at five out of six sampling occasions. Dominant organisms on steel pillars were the barnacle Balanus improvisus, the calcareous tubeworm Pomatoceros triqueter and the tunicate Ciona intestinalis. On the concrete pillars, the hydroid Laomedea sp. and the tunicates Corella parallelogramma and Ascidiella spp. dominated. However, there was no different in coverage at different heights on the pillars or in biomass and species abundance at different directions (north-east or south-west) 5 months after submergence. Fish showed overall higher abundances and species numbers on the pillars (but no difference between steel and concrete) compared to the surrounding soft bottom habitats but not compared to natural vertical rock walls. Two species were attracted to the pillars, indicating a reef effect; Gobiusculus flavescens and Ctenolabrus rupestris. The bottom-dwelling gobies, Pomatoschistus spp., did not show such preferences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
72.
73.
JBIC Journal of Biological Inorganic Chemistry - Ribonucleotide reductase (RNR) has been extensively probed as a target enzyme in the search for selective antibiotics. Here we report on the...  相似文献   
74.
Pancreatic islets have a central role in blood glucose homeostasis. In addition to insulin-producing beta-cells and glucagon-secreting alpha-cells, the islets contain somatostatin-releasing delta-cells. Somatostatin is a powerful inhibitor of insulin and glucagon secretion. It is normally secreted in response to glucose and there is evidence suggesting its release becomes perturbed in diabetes. Little is known about the control of somatostatin release. Closure of ATP-regulated K(+)-channels (K(ATP)-channels) and a depolarization-evoked increase in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) have been proposed to be essential. Here, we report that somatostatin release evoked by high glucose (>or=10 mM) is unaffected by the K(ATP)-channel activator diazoxide and proceeds normally in K(ATP)-channel-deficient islets. Glucose-induced somatostatin secretion is instead primarily dependent on Ca(2+)-induced Ca(2+)-release (CICR). This constitutes a novel mechanism for K(ATP)-channel-independent metabolic control of pancreatic hormone secretion.  相似文献   
75.
Elevated levels of the free fatty acid palmitate are found in the plasma of obese patients and induce insulin resistance. Skeletal muscle secretes myokines as extracellular signaling mediators in response to pathophysiological conditions. Here, we identified and characterized the skeletal muscle secretome in response to palmitate-induced insulin resistance. Using a quantitative proteomic approach, we identified 36 secretory proteins modulated by palmitate-induced insulin resistance. Bioinformatics analysis revealed that palmitate-induced insulin resistance induced cellular stress and modulated secretory events. We found that the decrease in the level of annexin A1, a secretory protein, depended on palmitate, and that annexin A1 and its receptor, formyl peptide receptor 2 agonist, played a protective role in the palmitate-induced insulin resistance of L6 myotubes through PKC-θ modulation. In mice fed with a high-fat diet, treatment with the formyl peptide receptor 2 agonist improved systemic insulin sensitivity. Thus, we identified myokine candidates modulated by palmitate-induced insulin resistance and found that the annexin A1- formyl peptide receptor 2 pathway mediated the insulin resistance of skeletal muscle, as well as systemic insulin sensitivity.The obesity epidemic has been linked to the development of metabolic complications such as hyperlipidemia, insulin resistance, and hypertension (1, 2). Hyperlipidemia/dyslipidemia involves abnormally elevated levels of lipids and/or lipoproteins in the plasma (3, 4). Obese patients exhibit characteristics of hyperlipidemia/dyslipidemia, such as abnormal elevations in plasma free fatty acid, cholesterol, and triglyceride levels, as well as a reduction in high-density lipoprotein content (35). Elevated free fatty acid levels in the plasma of obese patients play an important role in the development of insulin resistance (6). Hence, lowering the free fatty acid level in plasma has been shown to restore insulin sensitivity in these patients (7). Palmitate (C16:0) is a saturated free fatty acid found in animal plasma. It has been reported that the concentration of plasma palmitate in obese patients is higher than in healthy individuals (6, 8). In molecular studies, palmitate has been found to induce inflammation and insulin resistance in skeletal muscle cells by promoting diacylglycerol accumulation, which in turn activates protein kinase C (PKC)-θ1 and NF-κB, leading to the inhibition of insulin-stimulated Akt phosphorylation through insulin receptor substrate 1 (IRS1) (S307) phosphorylation and IL-6 secretion (9). Sortilin was recently identified as a mediator of palmitate-dependent insulin resistance, which regulates insulin-induced glucose transporter type 4 (GLUT4) trafficking (10). Therefore, palmitate is an important hyperlipidemic/dyslipidemic component that induces insulin resistance in skeletal muscle cells.Skeletal muscle is thought to function as a tissue that produces and releases cytokines called myokines (11). As part of its extracellular signaling pathway, skeletal muscle secretes myokines that participate in myogenesis, angiogenesis, and nutrient generation in response to factors such as metabolic disorders, including insulin resistance, and exercise (1113). Some myokines, including IL-6, IL-8, IL-15, and fibroblast growth factor 21, and brain-derived neurotrophic factor (14), are induced by exercise. Although myokines are thought to play a critical role in the regulation of (patho)physiological processes, few studies have investigated the role of myokine in metabolism. Because skeletal muscle has a major role in the regulation of glucose metabolism, it is important to identify putative crucial regulators, secreted from skeletal muscle, that modulate glucose metabolism by acting as autocrine/paracrine mediators as well as endocrine mediators (15).Here, using an optimized secretomics approach, we performed a proteomic analysis of proteins in conditioned media from myotube cultures that were either untreated or treated with palmitate to induce insulin resistance (16, 17). Using a label-free quantitative analysis method, our aim was to characterize the skeletal muscle secretome and to identify skeletal muscle-derived proteins whose secretion is modulated by palmitate-induced insulin resistance. We found 36 putative secretory proteins modulated by palmitate-induced insulin resistance. The secretion of annexin A1 was down-regulated after palmitate treatment, and the annexin A1-formyl peptide receptor 2 (FPR2) pathway played a role in palmitate-induced insulin resistance in skeletal muscle by modulating the PKC-θ pathway.  相似文献   
76.
Analogues of the irreversible protease inhibitors TPCK and TLCK have been synthesized and tested as inhibitors of the bacterial cysteine protease IdeS excreted by Streptococcus pyogenes. Eight compounds were identified as inhibitors of IdeS in an in vitro assay. The most potent compounds contained an aldehyde function, thus acting as efficient reversible inhibitors, nitrile and azide derivatives showed moderate activity.  相似文献   
77.
This article documents the addition of 411 microsatellite marker loci and 15 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Acanthopagrus schlegeli, Anopheles lesteri, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus terreus, Branchiostoma japonicum, Branchiostoma belcheri, Colias behrii, Coryphopterus personatus, Cynogolssus semilaevis, Cynoglossus semilaevis, Dendrobium officinale, Dendrobium officinale, Dysoxylum malabaricum, Metrioptera roeselii, Myrmeciza exsul, Ochotona thibetana, Neosartorya fischeri, Nothofagus pumilio, Onychodactylus fischeri, Phoenicopterus roseus, Salvia officinalis L., Scylla paramamosain, Silene latifo, Sula sula, and Vulpes vulpes. These loci were cross-tested on the following species: Aspergillus giganteus, Colias pelidne, Colias interior, Colias meadii, Colias eurytheme, Coryphopterus lipernes, Coryphopterus glaucofrenum, Coryphopterus eidolon, Gnatholepis thompsoni, Elacatinus evelynae, Dendrobium loddigesii Dendrobium devonianum, Dysoxylum binectariferum, Nothofagus antarctica, Nothofagus dombeyii, Nothofagus nervosa, Nothofagus obliqua, Sula nebouxii, and Sula variegata. This article also documents the addition of 39 sequencing primer pairs and 15 allele specific primers or probes for Paralithodes camtschaticus.  相似文献   
78.
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine protein kinase that requires association with a regulatory protein, p35 or p39, to form an active enzyme. Munc18-1 plays an essential role in membrane fusion, and its function is regulated by phosphorylation. We report here that both p35 and p39 were expressed in insulin-secreting beta-cells, where they exhibited individual subcellular distributions and associated with membranous organelles of different densities. Overexpression of Cdk5, p35, or p39 showed that Cdk5 and p39 augmented Ca(2+)-induced insulin exocytosis. Suppression of p39 and Cdk5, but not of p35, by antisense oligonucleotides selectively inhibited insulin exocytosis. Transient transfection of primary beta-cells with Munc18-1 templates mutated in potential Cdk5 or PKC phosphorylation sites, in combination with Cdk5 and the different Cdk5 activators, suggested that Cdk5/p39-promoted Ca(2+)-dependent insulin secretion from primary beta-cells by phosphorylating Munc18-1 at a biochemical step immediately prior to vesicle fusion.  相似文献   
79.
The objectives of this study were to 1). examine skeletal muscle fatty acid oxidation in individuals with varying degrees of adiposity and 2). determine the relationship between skeletal muscle fatty acid oxidation and the accumulation of long-chain fatty acyl-CoAs. Muscle was obtained from normal-weight [n = 8; body mass index (BMI) 23.8 +/- 0.58 kg/m(2)], overweight/obese (n = 8; BMI 30.2 +/- 0.81 kg/m(2)), and extremely obese (n = 8; BMI 53.8 +/- 3.5 kg/m(2)) females undergoing abdominal surgery. Skeletal muscle fatty acid oxidation was assessed in intact muscle strips. Long-chain fatty acyl-CoA concentrations were measured in a separate portion of the same muscle tissue in which fatty acid oxidation was determined. Palmitate oxidation was 58 and 83% lower in skeletal muscle from extremely obese (44.9 +/- 5.2 nmol x g(-1) x h(-1)) patients compared with normal-weight (71.0 +/- 5.0 nmol x g(-1) x h(-1)) and overweight/obese (82.2 +/- 8.7 nmol x g(-1) x h(-1)) patients, respectively. Palmitate oxidation was negatively (R = -0.44, P = 0.003) associated with BMI. Long-chain fatty acyl-CoA content was higher in both the overweight/obese and extremely obese patients compared with normal-weight patients, despite significantly lower fatty acid oxidation only in the extremely obese. No associations were observed between long-chain fatty acyl-CoA content and palmitate oxidation. These data suggest that there is a defect in skeletal muscle fatty acid oxidation with extreme obesity but not overweight/obesity and that the accumulation of intramyocellular long-chain fatty acyl-CoAs is not solely a result of reduced fatty acid oxidation.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号