首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   13篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   6篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1982年   3篇
  1981年   3篇
  1977年   3篇
  1961年   1篇
  1950年   1篇
  1925年   1篇
  1919年   1篇
  1917年   1篇
  1916年   1篇
  1915年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
21.

Background  

The aim of this study was to evaluate long-term platinum retention in patients treated with cisplatin and oxaliplatin.  相似文献   
22.
The balance between inhibition and excitation plays a crucial role in the generation of synchronous bursting activity in neuronal circuits. In human and animal models of epilepsy, changes in both excitatory and inhibitory synaptic inputs are known to occur. Locations and distribution of these excitatory and inhibitory synaptic inputs on pyramidal cells play a role in the integrative properties of neuronal activity, e.g., epileptiform activity. Thus the location and distribution of the inputs onto pyramidal cells are important parameters that influence neuronal activity in epilepsy. However, the location and distribution of inhibitory synapses converging onto pyramidal cells have not been fully studied. The objectives of this study are to investigate the roles of the relative location of inhibitory synapses on the dendritic tree and soma in the generation of bursting activity. We investigate influences of somatic and dendritic inhibition on bursting activity patterns in several paradigms of potential connections using a simplified multicompartmental model. We also investigate the effects of distribution of fast and slow components of GABAergic inhibition in pyramidal cells. Interspike interval (ISI) analysis is used for examination of bursting patterns. Simulations show that the inhibitory interneuron regulates neuronal bursting activity. Bursting behavior patterns depend on the synaptic weight and delay of the inhibitory connection as well as the location of the synapse. When the inhibitory interneuron synapses on the pyramidal neuron, inhibitory action is stronger if the inhibitory synapse is close to the soma. Alterations of synaptic weight of the interneuron can be compensatory for changes in the location of synaptic input. The relative changes in these parameters exert a considerable influence on whether synchronous bursting activity is facilitated or reduced. Additional simulations show that the slow GABAergic inhibitory component is more effective than the fast component in distal dendrites. Taken together, these findings illustrate the potential for GABAergic inhibition in the soma and dendritic tree to play an important modulatory role in bursting activity patterns.  相似文献   
23.
24.
Topical radioprotection of rat skin with WR-2721 has not been effective presumably because the drug does not cross the stratum corneum to reach the epidermis and dermis. Earlier, we showed in the mouse that WR-2721 and cysteine dissolved in permeation-enhancing vehicles passed through the skin more readily than when in water. However, the most effective vehicles in the mouse were not necessarily as effective in the rat. Here we report that the most effective transport vehicles in the rat were (1) water with WR-2721, (2) water and dimethylformamide (DMF) with cysteine, and (3) water and DMF with prostaglandin E2 (PGE2). Pretreatment of the skin with dimethylsulfoxide (DMSO) further improved the transfer of the radioprotectors across the skin in most cases. After pretreatment with DMSO, the most effective vehicles were (1) water for WR-2721, (2) water and methyl-2-pyrrolidone (M-2-P) for cysteine, and (3) DMF for PGE2.  相似文献   
25.
We have previously described a developmentally regulated mRNA in maize that accumulates in mature embryos and is involved in a variety of stress responses in the plant. The sequence of the encoded 16 kDa protein (MA16) predicts that it is an RNA-binding protein, since it possesses a ribonucleoprotein consensus sequence-type RNA-binding domain (CS-RBD). To assess the predicted RNA binding property of the protein and as a starting point to characterize its function we have used ribohomopolymer-binding assays. Here we show that the MA16-encoded protein binds preferentially to uridine- and guanosine-rich RNAs. In light of these results a likely role for this protein in RNA metabolism during late embryogenesis and in the stress response is discussed.  相似文献   
26.
The architecture of the filamentous green alga Cladophora glomerata (L.) Kütz. and the composition of this alga's epiphytes [primarily the diatoms Epithemia turgida (Ehrenb.) Kütz., Epithemia sorex Kütz., and Cocconeis pediculus Ehrenb.] were examined in different velocity regimes. After transferring algal-bearing cobbles among velocities, the effects of changes in velocity were also examined. Cladophora branching pattern did not initially differ among slow, medium, and fast velocities, indicating that stable water velocities did not affect branching pattern. Two weeks after cobble transfer, Cladophora in fast velocity had fragmented more (i.e. had fewer filaments and fewer branch points per length of filament and had a higher percentage of unbranched filaments) than Cladophora in slow velocity. Fragmentation was greatest in tufts moved from slow velocity, suggesting velocity-associated differences in susceptibility to breakage. Epiphytic assemblage composition differed among slow, medium, and fast velocities and between locations on the filament (base and apex). Cocconeis pediculus dominated where exposure to high velocity was greater (filament apices in medium and fast velocities), whereas the Epithemia spp. dominated where lower velocities occurred (filament bases in all velocities and apices in slow velocity). Two weeks after the cobble transfer, the translocated diatom assemblages had changed and the original pattern of diatom distribution was restored.  相似文献   
27.
A modified procedure for in situ hybridization of biotinylated probes to meiotic chromosomes of cotton has been developed with high retention of squashed cells on slides, preservation of acid-fixed chromosome morphology, exceptionally low levels of background precipitate at nonspecific hybridization sites and improved photomicrographic recording. Salient features of the techniques include pretreatment of slides before squashing, cold storage of squash preparations, and use of interference filters for distinguishing precipitate from chromatin. A cloned 18S/28S ribosomal DNA fragment from soybean was biotinylated via nick-translation and hybridized to microsporocyte meiotic chromosomes of cotton (Gossypium hirsutum L. and G. hirsutum L. X G. barbadense L.). Enzymatically formed precipitate from streptavidin-bound peroxidase marked the in situ hybridization. In situ hybridization of biotinylated probes to cotton meiotic chromosomes adds the specificity and resoltion of in situ hybridization to the chromosomal and genomic perspectives provided by meiotic cytogenetic analyses. Molecular cytogenetic analyses of meiotic cells offer certain inherent analytical advantages over analyses of somatic cells, e.g., in terms of mapping, and for studying fundamental biological and genetic problems, particularly for organisms that are not amenable to somatic karyotypic analysis.  相似文献   
28.
In the present study we examine the effects of the drug hadacidin (N-formyl-N- hydroxyglycine) on pinocytosis in the eukaryotic microorganism dictyostelium discoideum. At concentrations of up to approximately 8 mg/ml, hadacidin inhibited the rate of pinocytosis of fluorescein isothiocyanate (FITC) dextran in cells in growth medium in a concentration-dependent manner but had no effect on cells in starvation medium. Because hadacidin also inhibits cellular proliferation at this concentration, the relationship between growth rate and pinocytosis was studied further using another drug, cerulenin, to produce growth-arrest. These experiments showed no changes in the rate pinocytosis even after complete cessation of cellular proliferation. Other studies showed that the transfer of cells from growth to starvation medium reduced the rate of pinocytosis by approximately 50 percent. A reduction of similar magnitude occurred if cells were transferred from growth to starvation medium containing hadacidin. Also, no additional reduction in pinocytosis occurred when cells that had been treated with hadacidin were transferred to starvation medium containing hadacidin. These cells were able to take up [(14)C]hadacidin in the starvation medium. In contrast to the results with hadacidin-treated cells, cells in a cerulenin-induced state of growth-arrest when transferred to starvation medium exhibited the same 50 percent reduction in pinocytosis observed in cells not previously exposed to either drug. Cells treated with azide, in either growth or starvation medium, exhibited an immediate inhibition of all pinocytotic activity. After the transfer of log-phase cells to starvation medium supplemented with glucose, the reduction in rate was only approximately 10-15 percent. In contrast, a 50 percent reduction was observed after supplementation of starvation medium with sucrose, KCl, or concanavalin A. Maintaining the cells in growth medium containing hadacidin for as long as 16 h had no effect on the rate at which cells aggregated. These results are consistent with the conclusion that D. discoideum exhibits two types of pinocytotic activity: one that is nutrient dependent and the other independent of nutrients. This latter activity persists in starvation medium and is unaffected by hadacidin, whereas the nutrient-dependent activity is present in growth medium and is inhibited by hadacidin.  相似文献   
29.
30.
Cytosolic calcium is involved in the regulation of many intracellular processes. Intracellular calcium may therefore potentially affect the behavior of both single neurons and synaptically connected neuronal assemblies. In computer model studies, we investigated calcium dynamics in spherical neurons during periods of recurrent neuronal bursting that were simulated in a disinhibited neuronal network. The model takes into account calcium influx via voltage-gated calcium channels, extrusion through the cell membrane, and binding to two different buffers representing fixed and mobile endogenous calcium buffers. Throughout the duration of the simulated recurrent neuronal bursting, the concentration of free fixed buffers shows a hyperbolic decrease in time at a rate that is not uniform inside a neuron. Recurrent calcium influxes associated with bursting lead to the formation of gradients in the concentration of the fixed buffer in the radial direction, and are accompanied by the redistribution of mobile buffers acting to compensate for these gradients. Simulated intracellular calcium transients have a slow component characterized by a gradual increase in the calcium baseline level that reaches a plateau 120-200 s after the onset of recurrent bursting. Using this model, we demonstrate what we believe is a novel mechanism of regulation of network excitability that occurs in conditions of prolonged and recurrent neuronal bursting in disinhibited networks. This mechanism is expressed via interaction of calcium clearance systems inside neurons with calcium-dependent potassium regulation of neuronal excitability in membranes. This is a network phenomenon because it arises largely by synaptic interactions. Therefore, it can serve as a network safety mechanism to prevent excessive and uncontrolled neuronal firing resulting from the lack of inhibition or after acute suppression of the inhibitory drive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号