首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   681篇
  免费   63篇
  国内免费   2篇
  746篇
  2022年   4篇
  2021年   3篇
  2020年   7篇
  2019年   8篇
  2018年   10篇
  2017年   6篇
  2016年   17篇
  2015年   30篇
  2014年   21篇
  2013年   22篇
  2012年   31篇
  2011年   35篇
  2010年   30篇
  2009年   23篇
  2008年   28篇
  2007年   39篇
  2006年   32篇
  2005年   28篇
  2004年   34篇
  2003年   27篇
  2002年   18篇
  2001年   22篇
  2000年   19篇
  1999年   24篇
  1998年   21篇
  1997年   8篇
  1996年   5篇
  1995年   11篇
  1994年   9篇
  1993年   10篇
  1992年   14篇
  1991年   12篇
  1990年   13篇
  1989年   8篇
  1988年   12篇
  1987年   5篇
  1986年   7篇
  1985年   10篇
  1984年   6篇
  1982年   5篇
  1981年   5篇
  1979年   6篇
  1978年   7篇
  1977年   7篇
  1976年   8篇
  1974年   4篇
  1973年   6篇
  1970年   6篇
  1969年   5篇
  1958年   2篇
排序方式: 共有746条查询结果,搜索用时 140 毫秒
111.
112.
    
As pathogenic bacteria become increasingly resistant to antibiotics, antimicrobials with mechanisms of action distinct from current clinical antibiotics are needed. Gram-negative bacteria pose a particular problem because they defend themselves against chemicals with a minimally permeable outer membrane and with efflux pumps. During infection, innate immune defense molecules increase bacterial vulnerability to chemicals by permeabilizing the outer membrane and occupying efflux pumps. Therefore, screens for compounds that reduce bacterial colonization of mammalian cells have the potential to reveal unexplored therapeutic avenues. Here we describe a new small molecule, D66, that prevents the survival of a human Gram-negative pathogen in macrophages. D66 inhibits bacterial growth under conditions wherein the bacterial outer membrane or efflux pumps are compromised, but not in standard microbiological media. The compound disrupts voltage across the bacterial inner membrane at concentrations that do not permeabilize the inner membrane or lyse cells. Selection for bacterial clones resistant to D66 activity suggested that outer membrane integrity and efflux are the two major bacterial defense mechanisms against this compound. Treatment of mammalian cells with D66 does not permeabilize the mammalian cell membrane but does cause stress, as revealed by hyperpolarization of mitochondrial membranes. Nevertheless, the compound is tolerated in mice and reduces bacterial tissue load. These data suggest that the inner membrane could be a viable target for anti-Gram-negative antimicrobials, and that disruption of bacterial membrane voltage without lysis is sufficient to enable clearance from the host.  相似文献   
113.
A new series of thiazole-substituted 1,1,1,3,3,3-hexafluoro-2-propanols were prepared and evaluated as malonyl-CoA decarboxylase (MCD) inhibitors. Key analogs caused dose-dependent decreases in food intake and body weight in obese mice. Acute treatment with these compounds also led to a drop in elevated blood glucose in a murine model of type II diabetes.  相似文献   
114.
115.
116.
117.
    
Objective:The objective of the current study is to assess the effect of a seven-week voluntary wheel running intervention on muscles and bones properties in a mouse model mimicking dominant severe osteogenesis imperfecta (OI).Methods:Female wild-type (WT) and OI (Col1a1Jrt/+) mice either performed voluntarily wheel-running exercise for 7-weeks or remained sedentary. Running distance and speed, forelimb grip strength, isolated muscle force and fatigability as well as bone morphology and mechanical properties were assessed.Results:We demonstrate that female WT and OI mice voluntarily performed exercise, although OI mice exercised less than WT littermates. The exercise regimen increased soleus muscle masses in WT and OI but increased relative grip strength in WT mice only. Specific muscle force and fatigability were similar between WT and OI mice and did not improve with exercise. Furthermore, the exercise regimen did not improve the femoral architectural and biomechanical properties in OI mice.Conclusion:Our study suggests that voluntary wheel running is not appropriate to assess the effects of exercise in a mouse model of OI. Findings from exercising OI mice model studies may not necessarily be transferable to humans.  相似文献   
118.

Background

The PTEN phosphatase acts on phosphatidylinositol 3,4,5-triphosphates resulting from phosphatidylinositol 3-kinase (PI3K) activation. PTEN expression has been shown to be decreased in colorectal cancer. Little is known however as to the specific cellular role of PTEN in human intestinal epithelial cells. The aim of this study was to investigate the role of PTEN in human colorectal cancer cells.

Methodology/Principal Findings

Caco-2/15, HCT116 and CT26 cells were infected with recombinant lentiviruses expressing a shRNA specifically designed to knock-down PTEN. The impact of PTEN downregulation was analyzed on cell polarization and differentiation, intercellular junction integrity (expression of cell-cell adhesion proteins, barrier function), migration (wound assay), invasion (matrigel-coated transwells) and on tumor and metastasis formation in mice. Electron microscopy analysis showed that lentiviral infection of PTEN shRNA significantly inhibited Caco-2/15 cell polarization, functional differentiation and brush border development. A strong reduction in claudin 1, 3, 4 and 8 was also observed as well as a decrease in transepithelial resistance. Loss of PTEN expression increased the spreading, migration and invasion capacities of colorectal cancer cells in vitro. PTEN downregulation also increased tumor size following subcutaneous injection of colorectal cancer cells in nude mice. Finally, loss of PTEN expression in HCT116 and CT26, but not in Caco-2/15, led to an increase in their metastatic potential following tail-vein injections in mice.

Conclusions/Significance

Altogether, these results indicate that PTEN controls cellular polarity, establishment of cell-cell junctions, paracellular permeability, migration and tumorigenic/metastatic potential of human colorectal cancer cells.  相似文献   
119.
The T3SS injectisome is a syringe-shaped macromolecular assembly found in pathogenic Gram-negative bacteria that allows for the direct delivery of virulence effectors into host cells. It is composed of a “basal body”, a lock-nut structure spanning both bacterial membranes, and a “needle” that protrudes away from the bacterial surface. A hollow channel spans throughout the apparatus, permitting the translocation of effector proteins from the bacterial cytosol to the host plasma membrane. The basal body is composed largely of three membrane-embedded proteins that form oligomerized concentric rings. Here, we report the crystal structures of three domains of the prototypical Salmonella SPI-1 basal body, and use a new approach incorporating symmetric flexible backbone docking and EM data to produce a model for their oligomeric assembly. The obtained models, validated by biochemical and in vivo assays, reveal the molecular details of the interactions driving basal body assembly, and notably demonstrate a conserved oligomerization mechanism.  相似文献   
120.
The quality of a cervical cytology laboratory depends on adequate handling and staining of the samples, screening and interpretation of the slides and reporting of the results. These guidelines give an overview of procedures recommended in Europe to manage the balance between best patient care possible, laboratory quality assurance and cost effectiveness and will be published as a chapter 4 in the European Guidelines for Quality Assurance in Cervical Cancer Screening. The laboratory guidelines include protocols for personnel and organisation, material requirements, handling and analysing cervical samples, recording of results, quality management and communication. The section on quality management is comprehensive and includes protocols for all aspects of internal and external quality assurance. The guidelines are extensively referenced and as far as possible the recommendations are evidence-based.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号