The purpose of the current investigation was to use finite element analysis to quantify the complete strain field for the membranes of the FlexercellTM apparatus, a device extensively used to study the effects of mechanical loading on cultured cells. Four vacuum pressure simulations were run for the membrane for both the uniaxial and biaxial loading post, yielding the distribution of longitudinal (Exx) and transverse (Eyy) strain for the uniaxial post, and the radial (Err) and the circumferential (Eθθ) strain for the biaxial post. The discrete values of each strain were evaluated at the center of the loading post as well as the region off of the post. Experimental measurements were made for both types of loading posts in order to validate our simulations. The biaxial post simulation was found to provide a central circular region of equal and constant Err and Eθθ in the membrane on the post. Likewise, the uniaxial post simulation provided a definitive region of constant Exx for a central rectangular region on the post. For the uniaxial simulation, the region on the post resulted in small compressive Eyy, while the region off the post resulted in tensile Eyy. The biaxial simulation resulted in large tensile Err and Eθθ on the post, while the region off the post resulted in large Err and smaller Eθθ. Our simulations were reasonably consistent with the experimental measurements made for both types of loading posts. We believe that the results of this study will allow scientists to more accurately describe the response of cells to known strains on all portions of the membrane, thus increasing the range of known strain regions for investigation in the FlexercellTM apparatus. 相似文献
Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30°C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30°C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30°C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30°C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments. 相似文献
Humans and other species continually perform microscopic eye movements, even when attending to a single point. These movements, which include drifts and microsaccades, are under oculomotor control, elicit strong neural responses, and have been thought to serve important functions. The influence of these fixational eye movements on the acquisition and neural processing of visual information remains unclear. Here, we show that during viewing of natural scenes, microscopic eye movements carry out a crucial information-processing step: they remove predictable correlations in natural scenes by equalizing the spatial power of the retinal image within the frequency range of ganglion cells' peak sensitivity. This transformation, which had been attributed to center-surround receptive field organization, occurs prior to any neural processing and reveals a form of matching between the statistics of natural images and those of normal eye movements. We further show that the combined effect of microscopic eye movements and retinal receptive field organization is to convert spatial luminance discontinuities into synchronous firing events, beginning the process of edge detection. Thus, microscopic eye movements are fundamental to two goals of early visual processing: redundancy reduction and feature extraction. 相似文献
Partial weight-bearing instructions are commonly given to orthopaedic patients and are an important part of post-injury and/or post-operative care. However, the ability of patients to comply with these instructions is poorly defined. Training methods for instructing these patients vary widely among institutions. Traditional methods of training include verbal instruction and use of a bathroom scale. Recent technological advances have created biofeedback devices capable of offering feedback to partial weight-bearing patients. Biofeedback devices have shown great promise in training patients to better comply with partial weight-bearing instructions. This review examines the background and significance of partial weight bearing and offers insights into current advances in training methods for partial weight-bearing patients. 相似文献
Although small interfering RNA (siRNA) can silence the expression of disease-related genes, delivery of these highly charged molecules is challenging. Delivery approaches for siRNAs are actively being pursued, and improved strategies are required for nontoxic and efficient delivery for gene knockdown. Low density lipoprotein (LDL) is a natural and endogenous nanoparticle that has a rich history as a delivery vehicle. Here, we examine purified LDL nanoparticles as carriers for siRNAs. When siRNA was covalently conjugated to cholesterol, over 25 chol-siRNA could be incorporated onto each LDL without changing nanoparticle morphology. The resulting LDL-chol-siRNA nanoparticles were selectively taken up into cells via LDL receptor mediated endocytosis, resulting in enhanced gene silencing compared to free chol-siRNA (38% gene knock down versus 0% knock down at 100 nM). However, silencing efficiency was limited by the receptor-mediated entrapment of the LDL-chol-siRNA nanoparticles in endolysosomes. Photochemical internalization demonstrated that endolysosome disruption strategies significantly enhance LDL-mediated gene silencing (78% at 100 nM). 相似文献
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter family. CFTR consists of two transmembrane domains, two nucleotide-binding domains (NBD1 and NBD2), and a regulatory domain. Previous biochemical reports suggest NBD1 is a site of stable nucleotide interaction with low ATPase activity, whereas NBD2 is the site of active ATP hydrolysis. It has also been reported that NBD2 additionally possessed adenylate kinase (AK) activity. Knowledge about the intrinsic biochemical activities of the NBDs is essential to understanding the Cl(-) ion gating mechanism. We find that purified mouse NBD1, human NBD1, and human NBD2 function as adenylate kinases but not as ATPases. AK activity is strictly dependent on the addition of the adenosine monophosphate (AMP) substrate. No liberation of [(33)P]phosphate is observed from the gamma-(33)P-labeled ATP substrate in the presence or absence of AMP. AK activity is intrinsic to both human NBDs, as the Walker A box lysine mutations abolish this activity. At low protein concentration, the NBDs display an initial slower nonlinear phase in AK activity, suggesting that the activity results from homodimerization. Interestingly, the G551D gating mutation has an exaggerated nonlinear phase compared with the wild type and may indicate this mutation affects the ability of NBD1 to dimerize. hNBD1 and hNBD2 mixing experiments resulted in an 8-57-fold synergistic enhancement in AK activity suggesting heterodimer formation, which supports a common theme in ABC transporter models. A CFTR gating mechanism model based on adenylate kinase activity is proposed. 相似文献
The endoplasmic reticulum (ER) membrane protein complex (EMC) is essential for the insertion of a wide variety of transmembrane proteins into the plasma membrane across cell types. Each EMC is composed of Emc1-7, Emc10, and either Emc8 or Emc9. Recent human genetics studies have implicated variants in EMC genes as the basis for a group of human congenital diseases. The patient phenotypes are varied but appear to affect a subset of tissues more prominently than others. Namely, craniofacial development seems to be commonly affected. We previously developed an array of assays in Xenopus tropicalis to assess the effects of emc1 depletion on the neural crest, craniofacial cartilage, and neuromuscular function. We sought to extend this approach to additional EMC components identified in patients with congenital malformations. Through this approach, we determine that EMC9 and EMC10 are important for neural crest development and the development of craniofacial structures. The phenotypes observed in patients and our Xenopus model phenotypes similar to EMC1 loss of function likely due to a similar mechanism of dysfunction in transmembrane protein topogenesis. 相似文献
Feral pigs damage the significant ecological and cultural values of tropical Australian wetlands. Control measures such as culling, baiting, and trapping can reduce overall pig populations, but do not eliminate the substantial physical damage to wetlands that can occur from just a few individuals. Exclusion fences have been adopted as a potential technique to prevent damage to selected wetlands. To test the effectiveness of exclusion fences we measured the physical damage caused by pigs to multiple wetlands in the Archer River catchment of tropical northern Australia. Wetlands were fenced using a typical cattle exclusion fence, a specific pig exclusion fence or had no fence. Initial analyses of these fence treatments showed no significant difference in the intensity of physical pig damage to exposed wetland sediments and fringing vegetation. However, several of the pig exclusion fences were found to have been compromised. Reanalysis indicated wetlands with functioning pig exclusion fences had no physical pig damage and this was significantly less damage than in all other treatments. In contrast, wetlands with compromised pig exclusion fences had damage that was statistically equivalent to sites without fences or with cattle exclusion fences, but in individual cases had the worst damage recorded in any of the treatments. Compromised pig exclusion fencing of wetlands can thus be worse than having no fencing at all. This suggests that the successful prevention of pig damage to wetlands by exclusion fences requires ongoing and effective fence monitoring and maintenance regimes.
Marine Synechococcus spp and marine Prochlorococcus spp are numerically dominant photoautotrophs in the open oceans and contributors to the global carbon cycle. Syn5 is a short-tailed cyanophage isolated from the Sargasso Sea on Synechococcus strain WH8109. Syn5 has been grown in WH8109 to high titer in the laboratory and purified and concentrated retaining infectivity. Genome sequencing and annotation of Syn5 revealed that the linear genome is 46,214 bp with a 237 bp terminal direct repeat. Sixty-one open reading frames (ORFs) were identified. Based on genomic organization and sequence similarity to known protein sequences within GenBank, Syn5 shares features with T7-like phages. The presence of a putative integrase suggests access to a temperate life cycle. Assignment of 11 ORFs to structural proteins found within the phage virion was confirmed by mass-spectrometry and N-terminal sequencing. Eight of these identified structural proteins exhibited amino acid sequence similarity to enteric phage proteins. The remaining three virion proteins did not resemble any known phage sequences in GenBank as of August 2006. Cryo-electron micrographs of purified Syn5 virions revealed that the capsid has a single “horn”, a novel fibrous structure protruding from the opposing end of the capsid from the tail of the virion. The tail appendage displayed an apparent 3-fold rather than 6-fold symmetry. An 18 Å resolution icosahedral reconstruction of the capsid revealed a T = 7 lattice, but with an unusual pattern of surface knobs. This phage/host system should allow detailed investigation of the physiology and biochemistry of phage propagation in marine photosynthetic bacteria. 相似文献