全文获取类型
收费全文 | 229篇 |
免费 | 24篇 |
专业分类
253篇 |
出版年
2021年 | 3篇 |
2019年 | 3篇 |
2018年 | 3篇 |
2017年 | 3篇 |
2016年 | 4篇 |
2015年 | 7篇 |
2014年 | 11篇 |
2013年 | 7篇 |
2012年 | 24篇 |
2011年 | 15篇 |
2010年 | 11篇 |
2009年 | 4篇 |
2008年 | 18篇 |
2007年 | 16篇 |
2006年 | 17篇 |
2005年 | 11篇 |
2004年 | 10篇 |
2003年 | 10篇 |
2002年 | 3篇 |
2001年 | 4篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 4篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 3篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 5篇 |
1980年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 2篇 |
1973年 | 2篇 |
1970年 | 4篇 |
1969年 | 2篇 |
1968年 | 1篇 |
1967年 | 2篇 |
1958年 | 1篇 |
排序方式: 共有253条查询结果,搜索用时 46 毫秒
101.
Identification of uniparental disomy following prenatal detection of Robertsonian translocations and isochromosomes 总被引:3,自引:0,他引:3 下载免费PDF全文
Rearrangements of the acrocentric chromosomes (Robertsonian translocations and isochromosomes) are associated with an increased risk of aneuploidy. Given this, and the large number of reported cases of uniparental disomy (UPD) associated with an acrocentric rearrangement, carriers are presumed to be at risk for UPD. However, an accurate risk estimate for UPD associated with these rearrangements is lacking. A total of 174 prenatally identified acrocentric rearrangements, including both Robertsonian translocations and isochromosomes, were studied prospectively to identify UPD for the chromosomes involved in the rearrangements. The overall goal of the study was to provide an estimate of the risk of UPD associated with nonhomologous Robertsonian translocations and homologous acrocentric rearrangements. Of the 168 nonhomologous Robertsonian translocations studied, one showed UPD for chromosome 13, providing a risk estimate of 0.6%. Four of the six homologous acrocentric rearrangements showed UPD, providing a risk estimate of 66%. These cases have also allowed delineation of the mechanisms involved in producing UPD unique to Robertsonian translocations. Given the relatively high risk for UPD in prenatally identified Robertsonian translocations and isochromosomes, UPD testing should be considered, especially for cases involving the acrocentric chromosomes 14 and 15, in which UPD is associated with adverse clinical outcomes. 相似文献
102.
van den Wijngaard JP Westerhof BE Ross MG van Gemert MJ 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,292(4):R1519-R1531
The twin-twin transfusion syndrome (TTTS) is a severe complication of monochorionic twin pregnancies caused by a net transfusion of blood from one twin (the donor) to the other (the recipient) through placental anastomoses. To examine the pathophysiology of TTTS evolving through clinical stages I to IV, we extended our mathematical model to include pulsating circulations propagating along the arterial tree as well as placental and cerebral vascular resistances, and arterial wall thickness and stiffness. The model demonstrates that abnormal umbilical arterial flow (TTTS stage III) in the donor twin results from increased placental resistance as well as reduced resistance in the cerebral arteries. In contrast, recipient twin abnormal umbilical arterial flow requires a significantly greater increase in placental resistance, resulting from the compressive effects of high amniotic fluid pressure. Thus simulated abnormalities of donor umbilical arterial pulsations occur in the donor more commonly and earlier than in the recipient. The "normal" staging sequence (I, II, III, IV) correlates with the presence of compensating placental anastomoses, constituting the majority of monochorionic twin placentas. However, TTTS stage III may occur before manifestations of stage II (lack of donor bladder filling), in our model correlating with severe TTTS from a single arteriovenous anastomosis, an infrequent occurring placental angioarchitecture. In conclusion, this mathematical model describes the onset and development of the four stages of TTTS, reproduces a variety of clinical manifestations, and may contribute to identifying the underlying pathophysiology of the staging sequence in TTTS. 相似文献
103.
104.
?
The spliceosome is a eukaryote-specific complex that is essential for the removal of introns from pre-mRNA. It consists of five small nuclear RNAs (snRNAs) and over a hundred proteins, making it one of the most complex molecular machineries. Most of this complexity has emerged during eukaryogenesis, a period that is characterised by a drastic increase in cellular and genomic complexity. Although not fully resolved, recent findings have started to shed some light on how and why the spliceosome originated.In this paper we review how the spliceosome has evolved and discuss its origin and subsequent evolution in light of different general hypotheses on the evolution of complexity. Comparative analyses have established that the catalytic core of this ribonucleoprotein (RNP) complex, as well as the spliceosomal introns, evolved from self-splicing group II introns. Most snRNAs evolved from intron fragments and the essential Prp8 protein originated from the protein that is encoded by group II introns. Proteins that functioned in other RNA processes were added to this core and extensive duplications of these proteins substantially increased the complexity of the spliceosome prior to the eukaryotic diversification. The splicing machinery became even more complex in animals and plants, yet was simplified in eukaryotes with streamlined genomes. Apparently, the spliceosome did not evolve its complexity gradually, but in rapid bursts, followed by stagnation or even simplification. We argue that although both adaptive and neutral evolution have been involved in the evolution of the spliceosome, especially the latter was responsible for the emergence of an enormously complex eukaryotic splicing machinery from simple self-splicing sequences.Reviewers
This article was reviewed by W. Ford Doolittle, Eugene V. Koonin and Vivek Anantharaman.105.
106.
The alpha-glucosidase inhibitor BAY m 1099, a deoxynojirimycin derivative, was studied in sulfonylurea-treated type II diabetic patients using a placebo-controlled double-blind cross-over design. Given in two daily doses the inhibitor smoothened the blood glucose profile by lowering significantly post-prandial blood glucose peaks. Fasting and daily mean blood glucose levels measured as the area under the blood glucose curves were however not influenced significantly. This might be due to the short duration of the treatment periods or the low dosage of the drug. Abdominal side effects were negligible. The alpha-glucosidase inhibitor BAY m 1099 might become a useful therapeutic tool in addition to sulfonylurea treatment in type II diabetes. 相似文献
107.
108.
109.
110.
Huang IC Bosch BJ Li F Li W Lee KH Ghiran S Vasilieva N Dermody TS Harrison SC Dormitzer PR Farzan M Rottier PJ Choe H 《The Journal of biological chemistry》2006,281(6):3198-3203
Viruses require specific cellular receptors to infect their target cells. Angiotensin-converting enzyme 2 (ACE2) is a cellular receptor for two divergent coronaviruses, SARS coronavirus (SARS-CoV) and human coronavirus NL63 (HCoV-NL63). In addition to hostcell receptors, lysosomal cysteine proteases are required for productive infection by some viruses. Here we show that SARS-CoV, but not HCoV-NL63, utilizes the enzymatic activity of the cysteine protease cathepsin L to infect ACE2-expressing cells. Inhibitors of cathepsin L blocked infection by SARS-CoV and by a retrovirus pseudotyped with the SARS-CoV spike (S) protein but not infection by HCoV-NL63 or a retrovirus pseudotyped with the HCoV-NL63 S protein. Expression of exogenous cathepsin L substantially enhanced infection mediated by the SARS-CoV S protein and by filovirus GP proteins but not by the HCoV-NL63 S protein or the vesicular stomatitis virus G protein. Finally, an inhibitor of endosomal acidification had substantially less effect on infection mediated by the HCoV-NL63 S protein than on that mediated by the SARS-CoV S protein. Our data indicate that two coronaviruses that utilize a common receptor nonetheless enter cells through distinct mechanisms. 相似文献