首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8074篇
  免费   720篇
  国内免费   92篇
  8886篇
  2023年   32篇
  2022年   146篇
  2021年   236篇
  2020年   120篇
  2019年   150篇
  2018年   198篇
  2017年   152篇
  2016年   263篇
  2015年   445篇
  2014年   512篇
  2013年   564篇
  2012年   710篇
  2011年   639篇
  2010年   377篇
  2009年   301篇
  2008年   463篇
  2007年   451篇
  2006年   375篇
  2005年   351篇
  2004年   342篇
  2003年   263篇
  2002年   260篇
  2001年   239篇
  2000年   170篇
  1999年   135篇
  1998年   64篇
  1997年   50篇
  1996年   55篇
  1995年   49篇
  1994年   42篇
  1993年   34篇
  1992年   77篇
  1991年   46篇
  1990年   48篇
  1989年   43篇
  1988年   45篇
  1987年   45篇
  1986年   26篇
  1985年   31篇
  1984年   20篇
  1983年   21篇
  1982年   24篇
  1981年   23篇
  1980年   22篇
  1979年   25篇
  1978年   25篇
  1977年   24篇
  1976年   22篇
  1974年   21篇
  1973年   14篇
排序方式: 共有8886条查询结果,搜索用时 0 毫秒
951.
We investigated the effects of a novel peroxisome proliferator-activated receptor γ (PPARγ) agonist, KR62776, on osteoclast differentiation and function, and on the underlying signaling pathways. KR62776 markedly suppressed differentiation into osteoclasts in various osteoclast model systems, including bone marrow mononuclear (BMM) cells and a co-culture of calvarial osteoblasts and BMM cells. KR62776 suppressed the activation of tartrate-resistant acid phosphatase (TRAP) and the expression of genes associated with osteoclast differentiation, such as TRAP, dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated receptor (OSCAR). Furthermore, KR62776 reduced resorption pit formation in osteoclasts, and down-regulated genes essential for osteoclast activity, such as Src and αvβ3 integrin. An analysis of a signaling pathway showed that KR62776 inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK), extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB). Together, these results demonstrate that KR62776 negatively affects osteoclast differentiation and activity by inhibiting the RANKL-induced activation of MAP kinases and NF-κB.  相似文献   
952.
Trichoderma harzianum is a widely distributed soil fungus that antagonizes numerous fungal phytopathogens. The antagonism of T. harzianum usually correlates with the production of antifungal activities including the secretion of fungal cell walls that degrade enzymes such as chitinases. Chitinases Chit42 and Chit33 from T. harzianum CECT 2413, which lack a chitin-binding domain, are considered to play an important role in the biocontrol activity of this strain against plant pathogens. By adding a cellulose-binding domain (CBD) from cellobiohydrolase II of Trichoderma reesei to these enzymes, hybrid chitinases Chit33-CBD and Chit42-CBD with stronger chitin-binding capacity than the native chitinases have been engineered. Transformants that overexpressed the native chitinases displayed higher levels of chitinase specific activity and were more effective at inhibiting the growth of Rhizoctonia solani, Botrytis cinerea and Phytophthora citrophthora than the wild type. Transformants that overexpressed the chimeric chitinases possessed the highest specific chitinase and antifungal activities. The results confirm the importance of these endochitinases in the antagonistic activity of T. harzianum strains, and demonstrate the effectiveness of adding a CBD to increase hydrolytic activity towards insoluble substrates such as chitin-rich fungal cell walls.  相似文献   
953.
Scaffold proteins mediate efficient and specific signaling in several mitogen-activated protein (MAP) kinase cascades. In the yeast high osmolarity response pathway, the MAP kinase kinase Pbs2 is thought to function as a scaffold, since it binds the osmosensor Sho1, the upstream MAP kinase kinase kinase Ste11, and the downstream MAP kinase Hog1. Nonetheless, previous work has shown that Ste11 can be activated even when Pbs2 is deleted, resulting in inappropriate crosstalk to the mating pathway. We have found a region in the C terminus of Sho1 that binds Ste11 independently of Pbs2 and is required for crosstalk. These data support a model in which Sho1 has at least two separable interaction regions: one that binds Ste11 and mediates its activation, and one that binds Pbs2, directing Ste11 to act on Pbs2. Thus, a network of interactions provided by both Sho1 and Pbs2 appears to direct pathway information flow.  相似文献   
954.
A 47,XXY/46,XY male was investigated for the incidence of aneuploidy in sperm sex chromosomes using a three-colour X/Y/18 fluorescence in situ hybridisation (FISH) protocol. A total of 1701 sperm nuclei were analysed. The ratio of X-bearing to Y-bearing sperm did not differ from the expected 1 : 1 ratio although there were more 23,Y sperm than 23,X sperm (844 vs 795). There was a significantly increased proportion of disomy XY and XX sperm compared with normal controls (0.41% vs 0.10%, P < 0.001 and 0.29% vs 0.04%, P < 0.01). However, the incidence of YY sperm was similar to the controls (0.06% vs 0.02%). The diploidy rate was also significantly increased (1.7% vs 0.13%, P < 0.0001), as was disomy 18 (0.71% vs 0.01%) and 25,XXY (0.47% vs 0%). The results support the hypothesis that some 47,XXY cells are able to undergo meiosis and produce mature spermatozoa. Patients with mosaic Klinefelter syndrome with severe oligozoospermia have significantly elevated incidences of disomy XY and XX sperm and may be at a slightly increased risk of producing 47,XXX and 47,XXY offspring. Additionally, they may be at risk of producing offspring with autosomal trisomies. Hence, patients with Klinefelter mosaicism scheduled for intracytoplasmic sperm injection intervention should first undergo FISH analysis of their sperm to determine their risk. Received: 16 November 1998 / Accepted: 16 February 1999  相似文献   
955.
956.
Vibrio parahaemolyticus is an emerging bacterial pathogen which colonizes the gastrointestinal tract and can cause severe enteritis and bacteraemia. During infection, V. parahaemolyticus primarily attaches to the small intestine, where it causes extensive tissue damage and compromises epithelial barrier integrity. We have previously described that Multivalent Adhesion Molecule (MAM) 7 contributes to initial attachment of V. parahaemolyticus to epithelial cells. Here we show that the bacterial adhesin, through multivalent interactions between surface-induced adhesin clusters and phosphatidic acid lipids in the host cell membrane, induces activation of the small GTPase RhoA and actin rearrangements in host cells. In infection studies with V. parahaemolyticus we further demonstrate that adhesin-triggered activation of the ROCK/LIMK signaling axis is sufficient to redistribute tight junction proteins, leading to a loss of epithelial barrier function. Taken together, these findings show an unprecedented mechanism by which an adhesin acts as assembly platform for a host cellular signaling pathway, which ultimately facilitates breaching of the epithelial barrier by a bacterial pathogen.  相似文献   
957.
Previously we revealed that the extra domain of SARS 3CLpro mediated the catalysis via different mechanisms. While the R298A mutation completely abolished the dimerization, thus resulting in the inactive catalytic machinery, N214A inactivated the enzyme by altering its dynamics without significantly perturbing its structure. Here we studied another mutant with S284-T285-I286 replaced by Ala (STI/A) with a 3.6-fold activity increase and slightly enhanced dimerization. We determined its crystal structure, which still adopts the dimeric structure almost identical to that of the wild-type (WT), except for slightly tighter packing between two extra-domains. We then conducted 100-ns molecular dynamics (MD) simulations for both STI/A and WT, the longest reported so far for 3CLpro. In the simulations, two STI/A extra domains become further tightly packed, leading to a significant volume reduction of the nano-channel formed by residues from both catalytic and extra domains. The enhanced packing appears to slightly increase the dynamic stability of the N-finger and the first helix residues, which subsequently triggers the redistribution of dynamics over residues directly contacting them. This ultimately enhances the dynamical stability of the residues constituting the catalytic dyad and substrate-binding pockets. Further correlation analysis reveals that a global network of the correlated motions exists in the protease, whose components include all residues identified so far to be critical for the dimerization and catalysis. Most strikingly, the N214A mutation globally decouples this network while the STI/A mutation alters the correlation pattern. Together with previous results, the present study establishes that besides the classic structural allostery, the dynamic allostery also operates in the SARS 3CLpro, which is surprisingly able to relay the perturbations on the extra domain onto the catalytic machinery to manifest opposite catalytic effects. Our results thus imply a promising avenue to design specific inhibitors for 3CL proteases by disrupting their dynamic correlation network.  相似文献   
958.
The phytocystatins of plants are members of the cystatin superfamily of proteins, which are potent inhibitors of cysteine proteases. The Arabidopsis genome encodes seven phytocystatin isoforms (AtCYSs) in two distantly related AtCYS gene clusters. We selected AtCYS1 and AtCYS2 as representatives for each cluster and then generated transgenic plants expressing the GUS reporter gene under the control of each gene promoter. These plants were used to examine AtCYS expression at various stages of plant development and in response to abiotic stresses. Histochemical analysis of AtCYS1 promoter- and AtCYS2 promoter-GUS transgenic plants revealed that these genes have similar but distinct spatial and temporal expression patterns during normal development. In particular, AtCYS1 was preferentially expressed in the vascular tissue of all organs, whereas AtCYS2 was expressed in trichomes and guard cells in young leaves, caps of roots, and in connecting regions of the immature anthers and filaments and the style and stigma in flowers. In addition, each AtCYS gene has a unique expression profile during abiotic stresses. High temperature and wounding stress enhanced the expression of both AtCYS1 and AtCYS2, but the temporal and spatial patterns of induction differed. From these data, we propose that these two AtCYS genes play important, but distinct, roles in plant development and stress responses.  相似文献   
959.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   
960.
The phylogenetic relationships and molecular differentiation of three species of angiostrongylid nematodes (Angiostrongylus cantonensis, Angiostrongylus costaricensis and Angiostrongylus malaysiensis) were studied using the AC primers for a 66-kDa protein gene of A. cantonensis. The AC primers successfully amplified the genomic DNA of these angiostrongylid nematodes. No amplification was detected for the DNA of Ascaris lumbricoides, Ascaris suum, Anisakis simplex, Gnathostoma spinigerum, Toxocara canis, and Trichinella spiralis. The maximum-parsimony (MP) consensus tree and the maximum-likelihood (ML) tree both showed that the Angiostrongylus taxa could be divided into two major clades - Clade 1 (A. costaricensis) and Clade 2 (A. cantonensis and A. malaysiensis) with a full support bootstrap value. A. costaricensis is the most distant taxon. A. cantonensis is a sister group to A. malaysiensis; these two taxa (species) are clearly separated. There is no clear distinction between the A. cantonensis samples from four different geographical localities (Thailand, China, Japan and Hawaii); only some of the samples are grouped ranging from no support or low support to moderate support of bootstrap values. The published nucleotide sequences of A. cantonensis adult-specific native 66 kDa protein mRNA, clone L5-400 from Taiwan (U17585) appear to be very distant from the A. cantonensis samples from Thailand, China, Japan and Hawaii, with the uncorrected p-distance values ranging from 26.87% to 29.92%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号