首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8064篇
  免费   717篇
  国内免费   92篇
  2023年   28篇
  2022年   140篇
  2021年   236篇
  2020年   120篇
  2019年   150篇
  2018年   198篇
  2017年   152篇
  2016年   263篇
  2015年   445篇
  2014年   512篇
  2013年   564篇
  2012年   710篇
  2011年   639篇
  2010年   377篇
  2009年   301篇
  2008年   463篇
  2007年   451篇
  2006年   375篇
  2005年   351篇
  2004年   342篇
  2003年   263篇
  2002年   260篇
  2001年   239篇
  2000年   170篇
  1999年   135篇
  1998年   64篇
  1997年   50篇
  1996年   55篇
  1995年   49篇
  1994年   42篇
  1993年   34篇
  1992年   77篇
  1991年   46篇
  1990年   48篇
  1989年   43篇
  1988年   45篇
  1987年   45篇
  1986年   26篇
  1985年   31篇
  1984年   20篇
  1983年   21篇
  1982年   24篇
  1981年   23篇
  1980年   22篇
  1979年   25篇
  1978年   25篇
  1977年   24篇
  1976年   22篇
  1974年   21篇
  1973年   14篇
排序方式: 共有8873条查询结果,搜索用时 15 毫秒
81.
The influence of temperature, shoot age, and medium on gall induction by Subanguina picridis on Russian knapweed (Acroptilon repens) was examined in vitro. The optimal temperature for gall formation was 20 C. Gall induction was delayed as the temperature decreased, and decreased as shoot age increased. Bud primordia (0-day-old shoots and 5-day-old shoots) with an average length of 4.2 mm and 7.9 mm were the most suitable tissues for nematode development and gall formation. Gall formation was more effective on B5G medium than on MSG. Young shoots under slow growth were most suitable for mass rearing of S. picridis.  相似文献   
82.
Abstract— Growth factors stimulate cellular protein synthesis, but the intracellular signaling mechanisms that regulate initiation of mRNA translation in neurons have not been clarified. A rate-limiting step in the initiation of protein synthesis is the formation of the ternary complex among GTP, eukaryotic initiation factor 2 (elF-2), and the initiator tRNA. Here we report that genistein, a specific tyrosine kinase inhibitor, decreases tyrosine kinase activity and the content of phosphotyrosine proteins in cultured primary cortical neurons. Genistein inhibits protein synthesis by >80% in a dose-dependent manner (10–80 μg/ml) and concurrently decreases ternary complex formation by 60%. At the doses investigated, genistein depresses tyrosine kinase activity and concomitantly stimulates PKC activity. We propose that a protein tyrosine kinase participates in the initiation of protein synthesis in neurons, by affecting the activity of elF-2 directly or through a protein kinase cascade.  相似文献   
83.
L K Thorner  D A Lim    M R Botchan 《Journal of virology》1993,67(10):6000-6014
The E1 protein of bovine papillomavirus type 1 is a multifunctional enzyme required for papillomaviral DNA replication. It assists in the initiation of replication both as a site-specific DNA-binding protein and as a DNA helicase. Previous work has indicated that at limiting E1 concentrations, the E2 protein is required for efficient E1 binding to the replication origin. In this study, we have defined the domain of the E1 protein required for site-specific DNA binding. Experiments with a series of truncated proteins have shown that the first amino-terminal 299 amino acids contain the DNA-binding domain; however, the coterminal M protein, which is homologous to E1 for the first 129 amino acids, does not bind origin DNA. A series of small internal deletions and substitution mutations in the DNA-binding domain of E1 show that specific basic residues in this region of the protein, which are conserved in all E1 proteins of the papillomavirus family, likely play a direct role in binding DNA and that a flanking conserved hydrophobic subdomain is also important for DNA binding. A region of E1 that interacts with E2 for cooperative DNA binding is also retained in carboxy-terminal truncated proteins, and we show that the ability of full-length E1 to complex with E2 is sensitive to cold. The E1 substitution mutant proteins were expressed from mammalian expression vectors to ascertain whether site-specific DNA binding by E1 is required for transient DNA replication in the cell. These E1 proteins display a range of mutant phenotypes, consistent with the suggestion that site-specific binding by E1 is important. Interestingly, one E1 mutant which is defective for origin binding but can be rescued for such activity by E2 supports significant replication in the cell.  相似文献   
84.
The use of small-subunit rRNA-based oligonucleotides as probes for detecting marine nanoplanktonic protists was examined with a ciliate (an Uronema sp.), a flagellate (a Cafeteria sp.), and mixed assemblages of protists from enrichment cultures and natural seawater samples. Flow cytometry and epifluorescence microscopy analyses demonstrated that hybridizations employing fluorescein-labeled, eukaryote-specific probes intensely stained logarithmically growing protists, whereas these same protist strains in late stationary growth were barely detectable. The fluorescence intensity due to probe binding was significantly enhanced by the use of probes end labeled with biotin, which were detected by fluorescein-labeled avidin. The degree of signal amplification ranged from two- to fivefold for cultured protists in both logarithmic and stationary growth phases. Mixed assemblages of heterotrophic protists from enrichment cultures were also intensely labeled by rRNA-targeted oligonucleotide probes by the biotin-avidin detection system. Protists in late stationary growth phase and natural assemblages of protists that were otherwise undetectable when hybridized with fluorescein-labeled probes were easily visualized by this approach. In the latter samples, hybridization with multiple, biotin-labeled probes was necessary for detection of naturally occurring marine protists by epifluorescence microscopy. The signal amplification obtained with the biotin-avidin system should increase the utility of rRNA-targeted probes for identifying protists and facilitate characterization of the population structure and distribution of protists in aquatic environments.  相似文献   
85.
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen–plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.  相似文献   
86.
87.
88.
The crystal structure of amicyanin, a cupredoxin isolated from Paracoccus denitrificans, has been determined by molecular replacement. The structure has been refined at 2.0 A resolution using energy-restrained least-squares procedures to a crystallographic residual of 15.7%. The copper-free protein, apoamicyanin, has also been refined to 1.8 A resolution with residual 15.5%. The protein is found to have a beta-sandwich topology with nine beta-strands forming two mixed beta-sheets. The secondary structure is very similar to that observed in the other classes of cupredoxins, such as plastocyanin and azurin. Amicyanin has approximately 20 residues at the N-terminus that have no equivalents in the other proteins; a portion of these residues forms the first beta-strand of the structure. The copper atom is located in a pocket between the beta-sheets and is found to have four coordinating ligands: two histidine nitrogens, one cysteine sulfur, and, at a longer distance, one methionine sulfur. The geometry of the copper coordination is very similar to that in the plant plastocyanins. Three of the four copper ligands are located in the loop between beta-strands eight and nine. This loop is shorter than that in the other cupredoxins, having only two residues each between the cysteine and histidine and the histidine and methionine ligands. The amicyanin and apoamicyanin structures are very similar; in particular, there is little difference in the positions of the coordinating ligands with or without copper. One of the copper ligands, a histidine, lies close to the protein surface and is surrounded on that surface by seven hydrophobic residues. This hydrophobic patch is thought to be important as an electron transfer site.  相似文献   
89.
Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required. To date, most engineered PET hydrolases show improved thermostability over their parental enzymes. Here, we report engineered thermostable variants of Ideonella sakaiensis PET hydrolase enzyme (IsPETase) developed using two scaffolding strategies. The first employed SpyCatcher-SpyTag technology to covalently cyclize IsPETase, resulting in increased thermostability that was concomitant with reduced turnover of PET substrates compared to native IsPETase. The second approach using a GFP-nanobody fusion protein (vGFP) as a scaffold yielded a construct with a melting temperature of 80°C. This was further increased to 85°C when a thermostable PETase variant (FAST PETase) was scaffolded into vGFP, the highest reported so far for an engineered PET hydrolase derived from IsPETase. Thermostability enhancement using the vGFP scaffold did not compromise activity on PET compared to IsPETase. These contrasting results highlight potential topological and dynamic constraints imposed by scaffold choice as determinants of enzyme activity.  相似文献   
90.
Cnidarians are phylogenetically located near the base of the ‘tree of animals’, and their early evolution had a profound impact on the rise of bilaterians. However, the early diversity and phylogeny of this ‘lowly’ metazoan clade has hitherto been enigmatic. Fortunately, cnidarian fossils from the early Cambrian could provide key insights into their evolutionary history. Here, based on a scrutiny of the purported hyolith Burithes yunnanensis Hou et al. from the early Cambrian Chengjiang biota in South China, we reveal that this species shows characters distinct from those typical of hyoliths, not least a funnel-shaped gastrovascular system with a single opening, a whorl of tentacles surrounding the mouth, and the lack of an operculum. These characters suggest a great deviation from the original definition of the genus Burithes, and a closer affinity with cnidarians. We therefore reassign the material to a new genus: Palaeoconotuba. Bayesian inference of phylogeny based on new anatomical traits identifies a new clade, including Palaeoconotuba and Cambrorhytium, as a stem group of sessile medusozoan cnidarians that are united by the synapomorphies of developing an organic conical theca and a funnel-like gastrovascular system. This study unveils a stem lineage of medusozoans that evolved a lifelong conical theca in the early Cambrian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号