首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   686篇
  免费   65篇
  国内免费   1篇
  2023年   1篇
  2022年   12篇
  2021年   22篇
  2020年   17篇
  2019年   20篇
  2018年   35篇
  2017年   29篇
  2016年   32篇
  2015年   54篇
  2014年   62篇
  2013年   52篇
  2012年   60篇
  2011年   61篇
  2010年   29篇
  2009年   30篇
  2008年   28篇
  2007年   34篇
  2006年   32篇
  2005年   24篇
  2004年   21篇
  2003年   18篇
  2002年   22篇
  2001年   9篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1984年   1篇
  1983年   1篇
  1975年   1篇
  1972年   2篇
  1971年   1篇
  1967年   1篇
排序方式: 共有752条查询结果,搜索用时 15 毫秒
581.
582.
The dopamine D2 receptor (D2R) plays a crucial role in the regulation of diverse key physiological functions, including motor control, reward, learning, and memory. This receptor is present in vivo in two isoforms, D2L and D2S, generated from the same gene by alternative pre-mRNA splicing. Each isoform has a specific role in vivo, underlining the importance of a strict control of its synthesis, yet the molecular mechanism modulating alternative D2R pre-mRNA splicing has not been completely elucidated. Here, we identify heterogeneous nuclear ribonucleoprotein M (hnRNP M) as a key molecule controlling D2R splicing. We show that binding of hnRNP M to exon 6 inhibited the inclusion of this exon in the mRNA. Importantly, the splicing factor Nova-1 counteracted hnRNP M effects on D2R pre-mRNA splicing. Indeed, mutations of the putative Nova-1-binding site on exon 6 disrupted Nova-1 RNA assembly and diminished the inhibitory effect of Nova-1 on hnRNP M-dependent exon 6 exclusion. These results identify Nova-1 and hnRNP M as D2R pre-mRNA-binding proteins and show their antagonistic role in the alternative splicing of D2R pre-mRNA.  相似文献   
583.
Cho HY  Cho HJ  Kim MH  Kang BS 《FEBS letters》2011,585(12):1873-1878
Two sensor kinases, DosS and DosT, are responsible for recognition of hypoxia in Mycobacterium tuberculosis. Both proteins are structurally similar to each other, but DosS is a redox sensor while DosT binds oxygen. The primary difference between the two proteins is the channel to the heme present in their GAF domains. DosS has a channel that is blocked by E87 while DosT has an open channel. Absorption spectra of DosS mutants with an open channel show that they bind oxygen as DosT does when they are exposed to air, while DosT G85E mutant is oxidized similarly to DosS without formation of an oxy-ferrous form. This suggests that oxygen accessibility to heme is the primary factor governing the oxygen-binding properties of these proteins.  相似文献   
584.
A new genus and species of Draconematidae Filipjev, 1918, Megadraconema cornutum gen. nov., sp. nov., inhabiting subtidal sediments in Jejudo, Korea is described. Megadraconema cornutum gen. nov., sp. nov. is mainly characterized by a long body (1630-2220 μm), presence of a transverse circle of well-developed papillae-like cuticular protrusions at the base of the lip region, a head capsule with reticular structure of subcuticle, an amphid with a pore-like opening, and an internal, bar-shaped fovea. The diagnosis of the family Draconematidae is emended and a key to genus is provided based on their major differential diagnostic characteristics, summarized in a table. Phylogenetic relationships of all the genera within the Draconematidae are discussed for the first time, based on molecular analyses and morphological features. The phylogenetic position of the new genus and relationships within the family Draconematidae based on analysis of molecular sequence data are examined. Analysis of 18S rRNA gene sequences does not support the currently accepted classification, and indicates paraphyly of the subfamily Draconematinae.  相似文献   
585.
Lee YH  Uhm JS  Yoon SH  Kang JY  Kim EK  Kang BS  Min do S  Bae YS 《BMB reports》2011,44(9):572-577
Elevated phospholipase D (PLD) expression prevents cell cycle arrest and apoptosis. However, the roles of PLD isoforms in cell proliferation and apoptosis are incompletely understood. Here, we investigated the physiological significance of the interaction between PLD2 and protein kinase CKII (CKII) in HCT116 human colorectal carcinoma cells. PLD2 interacted with the CKIIβ subunit in HCT116 cells. The C-terminal domain (residues 578-933) of PLD2 and the N-terminal domain of CKIIβ were necessary for interaction between the two proteins. PLD2 relocalized CKIIβ to the plasma membrane area. Overexpression of PLD2 reduced CKIIβ protein level, whereas knockdown of PLD2 led to an increase in CKIIβ expression. PLD2-induced CKIIβ reduction was mediated by ubiquitin-dependent degradation. The C-terminal domain of PLD2 was sufficient for CKIIβ degradation as the catalytic activity of PLD2 was not required. Taken together, the results indicate that the C-terminal domain of PLD2 can regulate CKII by accelerating CKIIβ degradation in HCT116 cells.  相似文献   
586.
Herein, a new solvation strategy enabled by Mg(NO3)2 is introduced, which can be dissolved directly as Mg2+ and NO3? ions in the electrolyte to change the Li+ ion solvation structure and greatly increase interfacial stability in Li‐metal batteries (LMBs). This is the first report of introducing Mg(NO3)2 additives in an ester‐based electrolyte composed of ternary salts and binary ester solvents to stabilize LMBs. In particular, it is found that NO3? efficiently forms a stable solid electrolyte interphase through an electrochemical reduction reaction, along with the other multiple anion components in the electrolyte. The interaction between Li+ and NO3? and coordination between Mg2+ and the solvent molecules greatly decreases the number of solvent molecules surrounding the Li+, which leads to facile Li+ desolvation during plating. In addition, Mg2+ ions are reduced to Mg via a spontaneous chemical reaction on the Li metal surface and subsequently form a lithiophilic Li–Mg alloy, suppressing lithium dendritic growth. The unique solvation chemistry of Mg(NO3)2 enables long cycling stability and high efficiency of the Li‐metal anode and ensures an unprecedented lifespan for a practical pouch‐type LMB with high‐voltage Ni‐rich NCMA73 cathode even under constrained conditions.  相似文献   
587.

Understanding the effects of abiotic environmental factors on invasive plants species traits is of importance for practical prevention. To examine the effects of soil fertility and flooding regime on the growth of Ambrosia trifida L., a mesocosm experiment was conducted for 18 weeks. Two levels of soil fertility (high and low) and three types of flooding regime (non-flooded, flooded, and periodically flooded) were prepared. Shoot height and dry weight of each plant were measured. We found both individual and interactive effects of soil fertility and flooding regime on the overall growth performance of A. trifida (p?<?0.05). The highest shoot height (154.7?±?4.4 cm) and total dry weight (TDW, 13.0?±?1.4 g) were obtained under high fertility and non-flooded condition. Height and weight were relatively low under flooding conditions (flooded and periodically flooded). In particular, shoot height (102.3?±?3.2 cm) and TDW (3.2?±?0.3 g) were the lowest under low fertility and periodically flooded condition. On the other hand, the ratio of above- to below-ground dry weight was relatively high under flooded conditions, showing the adaptive phenotypic plasticity. Adventitious root formation and more biomass allocation to shoots were a flooding-adaptive mechanism of A. trifida, well developed under high fertility condition. We suggest maintaining appropriate water regime and avoiding eutrophication in wetlands would be necessary to prevent A. trifida from invading. These findings will contribute to the conservation of biodiversity in wetlands by effective management of A. trifida.

  相似文献   
588.
589.
To enhance the production efficiency of foreign protein in baculovirus expression systems, the effects of polyhedrin fragments were investigated by fusion expressing them with the enhanced green fluorescent protein (EGFP). Recombinant viruses were generated to express EGFP fused with polyhedrin fragments based on the previously reported minimal region for self-assembly and the KRKK nuclear localization signal (NLS). Fusion expressions with polyhedrin amino acids 19 to 110 and 32 to 110 lead to localization of recombinant protein into the nucleus and mediate its assembly. The marked increase of EGFP by these fusion expressions was confirmed through protein and fluorescence intensity analyses. The importance of nuclear localization for enhanced production was shown by the mutation of the NLS within the fused polyhedrin fragment. In addition, when the polyhedrin fragment fused with EGFP was not localized in the nucleus, some fragments increased the production of protein. Among these fragments, some degradation of only the fused polyhedrin was observed in the fusion of amino acids 19 to 85 and 32 to 85. The fusion of amino acids 32 to 85 may be more useful for the enhanced and intact production of recombinant protein. The production of E2 protein, which is a major antigen of classical swine fever virus, was dramatically increased by fusion expression with polyhedrin amino acids 19 to 110, and its preliminary immunogenicity was verified using experimental guinea pigs. This study suggests a new option for higher expression of useful foreign recombinant protein by using the partial polyhedrin in baculovirus.  相似文献   
590.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号