首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   35篇
  2021年   3篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   8篇
  2014年   9篇
  2013年   5篇
  2012年   12篇
  2011年   20篇
  2010年   14篇
  2009年   10篇
  2008年   11篇
  2007年   5篇
  2006年   7篇
  2005年   15篇
  2004年   10篇
  2003年   14篇
  2002年   4篇
  2001年   4篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1969年   1篇
  1968年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
51.
Cellulosomes are efficient cellulose-degradation systems produced by selected anaerobic bacteria. This multi-enzyme complex is assembled from a group of cellulases attached to a protein scaffold termed scaffoldin, mediated by a high-affinity protein–protein interaction between the enzyme-borne dockerin module and the cohesin module of the scaffoldin. The enzymatic complex is attached as a whole to the cellulosic substrate via a cellulose-binding module (CBM) on the scaffoldin subunit. In previous works, we have employed a synthetic biology approach to convert several of the free cellulases of the aerobic bacterium, Thermobifida fusca, into the cellulosomal mode by replacing each of the enzymes’ CBM with a dockerin. Here we show that although family six enzymes are not a part of any known cellulosomal system, the two family six enzymes of the T. fusca system (endoglucanase Cel6A and exoglucanase Cel6B) can be converted to work as cellulosomal enzymes. Indeed, the chimaeric dockerin-containing family six endoglucanase worked well as a cellulosomal enzyme, and proved to be more efficient than the parent enzyme when present in designer cellulosomes. In stark contrast, the chimaeric family six exoglucanase was markedly less efficient than the wild-type enzyme when mixed with other T. fusca cellulases, thus indicating its incompatibility with the cellulosomal mode of action.  相似文献   
52.
Conserved eukaryotic signaling proteins participate in development and disease in plant-pathogenic fungi. Strains with mutations in CGA1, a heterotrimeric G protein G alpha subunit gene of the maize pathogen Cochliobolus heterostrophus, are defective in several developmental pathways. Conidia from CGA1 mutants germinate as abnormal, straight-growing germ tubes that form few appressoria, and the mutants are female sterile. Nevertheless, these mutants can cause normal lesions on plants, unlike other filamentous fungal plant pathogens in which functional homologues of CGA1 are required for full virulence. Deltacga1 mutants of C. heterostrophus were less infective of several maize varieties under most conditions, but not all, as virulence was nearly normal on detached leaves. This difference could be related to the rapid senescence of detached leaves, since delaying senescence with cytokinin also had differential effects on the virulence of the wild type and the Deltacga1 mutant. In particular, detached leaves may provide a more readily available nutrient source than attached leaves. Decreased fitness of Deltacga1 as a pathogen may reflect conditions under which full virulence requires signal transduction through CGA1-mediated pathways. The virulence of these signal transduction mutants is thus affected differentially by the physiological state of the host.  相似文献   
53.
Green SJ  Freeman S  Hadar Y  Minz D 《Mycologia》2004,96(3):439-451
The Pyrenomycetes, defined physiologically by the formation of a flask-shaped fruiting body present in the sexual form, are a monophyletic group of fungi that consist of a wide diversity of populations including human and plant pathogens. Based on sequence analysis of 18S ribosomal DNA (rDNA), rDNA regions conserved among the Pyrenomycetes but divergent among other organisms were identified and used to develop selective PCR primers and a highly specific primer set. The primers presented here were used to amplify large portions of the 18S rDNA as well as the entire internal transcribed spacer (ITS) region (ITS 1, 5.8S rDNA, and ITS 2). In addition to database searches, the specificity of the primers was verified by PCR amplification of DNA extracted from pure culture isolates and by sequence analysis of fungal rDNA PCR-amplified from environmental samples. In addition, denaturing gradient gel electrophoresis (DGGE) analyses were performed on closely related Colletotrichum isolates serving as a model pathogenic genus of the Pyrenomycetes. Although both ITS and 18S rDNA DGGE analyses of Colletotrichum were consistent with a phylogeny established from sequence analysis of the ITS region, DGGE analysis of the ITS region was found to be more sensitive than DGGE analysis of the 18S rDNA. This study introduces molecular tools for the study of Pyrenomycete fungi by the development of two specific primers, demonstration of the enhanced sensitivity of ITS-DGGE for typing of closely related isolates and application of these tools to environmental samples.  相似文献   
54.
The steady state kinetic parameters Km and kcat for the oxidation of phenolic substrates by lignin peroxidase correlated with the presteady state kinetic parameters Kd and k for the reaction of the enzyme intermediate compound II with the substrates, indicating that the latter is the rate-limiting step in the catalytic cycle. ln Km and ln Kd values for phenolic substrates correlated with redox properties, unlike ln kcat and ln k. This finding suggests that in contrast to horseradish peroxidase, electron transfer is not the rate-limiting step during oxidation by lignin peroxidase compound II. A mechanism is proposed for lignin peroxidase compound II reactions consisting of an equilibrium electron transfer step followed by a subsequent rate-limiting step. Analysis of the correlation coefficients for linear relationships between ln Kd and ln Km and different calculated redox parameters supports a mechanism in which the acidic forms of phenols are oxidized by lignin peroxidase and electron transfer is coupled with proton transfer. 1,2-Dimethoxyarenes did not comply with the trend for phenolic substrates, which may be a result of more than one substrate binding site on lignin peroxidase and/or alternative binding modes. This behavior was supported by analogue studies with the 1,2-dimethoxyarenes veratric acid and veratryl aldehyde, both of which are not oxidized by lignin peroxidase. Inclusion of either had little effect on the rate of oxidation of phenolic substrates yet resulted in a decrease in the oxidation rate of 1,2-dimethoxyarene substrates, which was considerable for veratryl alcohol and less pronounced for 3,4-dimethoxyphenethylalcohol and 3,4-dimethoxycinnamic acid, in particular in the presence of veratric acid.  相似文献   
55.
56.
Shomron N  Malca H  Vig I  Ast G 《Nucleic acids research》2002,30(19):4127-4137
A multicomponent complex of proteins and RNA is assembled on the newly synthesized pre-mRNA to form the spliceosome. This complex catalyzes a two-step transesterification reaction required to remove the introns and ligate the exons. To date, only six proteins have been found necessary for the second step of splicing in yeast, and their human homologs have been identified. We demonstrate that the addition of the selective chelator of zinc, 1,10-phenanthroline, to an in vitro mRNA splicing reaction causes a dose-dependent inhibition of the second step of splicing. This inhibition is accompanied by the accumulation of spliceosomes paused before completion of step two of the splicing reaction. The inhibition effect on the second step is due neither to snRNA degradation nor to direct binding to the mRNA, and is reversible by dialysis or add-back of zinc, but not of other divalent metals, at the beginning of the reaction. These findings suggest that the activity of a putative zinc-dependent metalloprotein(s) involved in the second step of splicing is affected. This study outlines a new method for specific reversible inhibition of the second step of splicing using external reagents, and suggests a possible role of divalent cations in the second step of mRNA splicing, most likely zinc.  相似文献   
57.
The effect of Mn2+ amendment on peroxidase gene expression was studied during Pleurotus ostreatus growth on cotton stalks. Four peroxidase-encoding genes were expressed differentially and in a manner different from that observed in defined media. Mn2+ affects mnp3 expression even 2 h after its addition to the cultures, suggesting a direct effect of the metal ion on expression.  相似文献   
58.
Iron Uptake in Ustilago maydis: Tracking the Iron Path   总被引:2,自引:0,他引:2       下载免费PDF全文
In this study, we monitored and compared the uptake of iron in the fungus Ustilago maydis by using biomimetic siderophore analogs of ferrichrome, the fungal native siderophore, and ferrioxamine B (FOB), a xenosiderophore. Ferrichrome-iron was taken up at a higher rate than FOB-iron. Unlike ferrichrome-mediated uptake, FOB-mediated iron transport involved an extracellular reduction mechanism. By using fluorescently labeled siderophore analogs, we monitored the time course, as well as the localization, of iron uptake processes within the fungal cells. A fluorescently labeled ferrichrome analog, B9-lissamine rhodamine B, which does not exhibit fluorescence quenching upon iron binding, was used to monitor the entry of the compounds into the fungal cells. The fluorescence was found intracellularly 4 h after the application and later was found concentrated in two to three vesicles within each cell. The fluorescence of the fluorescently labeled FOB analog CAT18, which is quenched by iron, was visualized around the cell membrane after 4 h of incubation with the ferrated (nonfluorescent) compounds. This fluorescence intensity increased with time, demonstrating fungal iron uptake from the siderophores, which remained extracellular. We here introduce the use of fluorescent biomimetic siderophores as tools to directly track and discriminate between different pathways of iron uptake in cells.  相似文献   
59.
60.
Chaetomium thermophilium was isolated from composting municipal solid waste during the thermophilic stage of the process. C. thermophilium, a cellulolytic fungus, exhibited laccase activity when it was grown at 45°C both in solid media and in liquid media. Laccase activity reached a peak after 24 h in liquid shake culture. Laccase was purified by ultrafiltration, anion-exchange chromatography, and affinity chromatography. The purified enzyme was identified as a glycoprotein with a molecular mass of 77 kDa and an isoelectric point of 5.1. The laccase was stable for 1 h at 70°C and had half-lives of 24 and 12 h at 40 and 50°C, respectively. The enzyme was stable at pH 5 to 10, and the optimum pH for enzyme activity was 6. The purified laccase efficiently catalyzed a wide range of phenolic substrates but not tyrosine. The highest levels of affinity were the levels of affinity to syringaldazine and hydroxyquinone. The UV-visible light spectrum of the purified laccase had a peak at 604 nm (i.e., Cu type I), and the activity was strongly inhibited by Cu-chelating agents. When the hydrophobic acid fraction (the humic fraction of the water-soluble organic matter obtained from municipal solid waste compost) was added to a reaction assay mixture containing laccase and guaiacol, polymerization took place and a soluble polymer was formed. C. thermophilium laccase, which is produced during the thermophilic stage of composting, can remain active for a long period of time at high temperatures and alkaline pH values, and we suggest that this enzyme is involved in the humification process during composting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号