首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   11篇
  国内免费   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   5篇
  2015年   7篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   8篇
  2009年   9篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   11篇
  2004年   7篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1977年   3篇
  1969年   1篇
  1968年   8篇
  1964年   1篇
排序方式: 共有133条查询结果,搜索用时 78 毫秒
41.
When males and hermaphrodites coexist: a review of androdioecy in animals   总被引:2,自引:0,他引:2  
Androdioecy (populations consisting of males and hermaphrodites)is a rare mating system in plants and animals: up to 50 plantsand only 36 animals have been described as being androdioecious,with most of the latter being crustaceans. To date, a thoroughcomparative analysis of androdioecy in animals has not beenundertaken. Herein we present such an analysis. Androdioecyhas only been extensively surveyed in 2 animal taxa: the nematodeCaenorhabditis and the clam shrimp Eulimnadia. The other majortaxon having androdioecious species is the Cirripedia (barnacles),but there are only limited studies on androdioecy in this group.In animals, androdioecy is found either in species that havemorphologically and ecologically distinct sexes (that is, hermaphroditesand small, "complemental" males) that are derived from hermaphroditicancestors (that is, the barnacles) or in species that have similarly-sizedmales and hermaphrodites that have been derived from dioeciousancestors (the remaining androdioecious species). We suggestthat the barnacles have evolved a sexual specialization in theform of these complemental males that can more efficiently usethe constrained habitats that these barnacles often experience.For the remaining species, we suggest that androdioecy has evolvedas a response to reproductive assurance in species that experienceepisodic low densities. Additionally, we hypothesize that thedevelopment of mechanisms allowing reproductive assurance inspecies with a number of sexually differentiated traits is mostlikely to result in androdioecy rather than gynodioecy (mixturesof females and hermaphrodites), and that these species may bedevelopmentally constrained to stay androdioecious rather thanbeing capable of evolving into populations solely consistingof efficient, self-compatible hermaphrodites. We conclude bysuggesting several areas in need of further study to understandmore completely the evolution and distribution of this interestingmating system in animals.  相似文献   
42.
Three new ribosome-inactivating protein (RIP; EC 3.2.2.22) isoforms that we have named musarmins (MUs) 1, 2 and 3 have been isolated from the bulbs of Muscari armeniacum L. and Miller by ion-exchange chromatography and gel filtration. Analysis by electrophoresis revealed that they are single-chain proteins and mass spectrometry analysis afforded Mr values of 28,708, 30,003 and 27,626 for MUs 1, 2 and 3, respectively. Musarmins strongly inhibited protein synthesis carried out by mammalian ribosomes, with IC50 values in the 0.14-0.24nM range but not that carried out by plant cell-free systems or HeLa cells. MUs promote the single depurination of rabbit reticulocyte 28S rRNA. cDNA cloning of genes coding for musarmins revealed that they contain open reading frames of 298, 294 and 295 aminoacids for MU1, MU2 and MU3, respectively. Mature MU1, MU2 and MU3 contain 277, 273 and 273 aminoacids, respectively suggesting post-translational C-terminal processing. An untranslated mRNA coding for an ORF very similar to that of MU3 was detected in leaves. Each of the four MU genes contains an intron. In contrast to other RIPs, MUs are present only in bulbs and are not induced in leaves either by senescence, or by treatment of leaves with H2O2 or salicylic acid, or by growth in darkness. Therefore, these proteins could play a non-vital role in plants; for instance, as anti-pathogens and protective agents only in some stages of the plant life cycle (237).  相似文献   
43.
We describe a novel immobilization technique to investigate interactions between immobilized gangliosides (GD3, GM1, and GM2) and their respective antibodies, antibody fragments, or binding partners using an optical biosensor. Immobilization was performed by direct injection onto a carboxymethyldextran sensor chip and did not require derivatization of the sensor surface or the ganglioside. The ganglioside appeared to bind to the sensor surface by hydrophobic interaction, leaving the carbohydrate epitope available for antibody or, in the case of GM1, cholera toxin binding. The carboxyl group of the dextran chains on the sensor surface did not appear to be involved in the immobilization as evidenced by equivalent levels of immobilization following conversion of the carboxyl groups into acyl amino esters, but rather the dextran layer provided a hydrophilic coverage of the sensor chip which was essential to prevent nonspecific binding. This technique gave better reactivity and specificity for anti- ganglioside monoclonal antibodies (anti-GD3: KM871, KM641, R24; and anti-GM2: KM966) than immobilization by hydrophobic interaction onto a gold sensor surface or photoactivated cross-linking onto carboxymethydextran. This rapid immobilization procedure has facilitated detailed kinetic analysis of ganglioside/antibody interactions, with the surface remaining viable for a large number of cycles (>125). Kinetic constants were determined from the biosensor data using linear regression, nonlinear least squares and equilibrium analysis. The values of kd, ka, and KAobtained by nonlinear analysis (KAKM871 = 1.05, KM641 = 1.66, R24 = 0.14, and KM966 = 0.65 x 10(7) M- 1) were essentially independent of concentration and showed good agreement with data obtained by other analytical methods.   相似文献   
44.
The influence of different gangliosides (GM1, GD1a, GT1b) on the fluidity and surface dynamics of phosphatidylcholine small unilamellar vesicles was studied by electron paramagnetic resonance. 5-and 16-nitroxystearic acid, sounding respectively the region close to the surface and that close to the hydrophobic core of the vesicle, were employed as spin-label probes. The signals released by 5-nitroxystearic acid showed that the presence of gangliosides reduced the mobility of the hydrocarbon chains around the probe. The effect increased by increasing ganglioside concentration, and diminished from GM1 to GD1a and GT1b. The decrease of membrane fluidity was also monitored by the 16-nitroxystearic acid probe. On addition of Ca2+ the fluidity of ganglioside-containing vesicles (as signalled by the 5-nitroxystearic acid probe) promptly decreased, thereafter returning slowly to the original value. It is suggested that gangliosides cause strong side-side head group interactions on the bilayer surface -between ganglioside oligosaccharide chains and between ganglioside and phosphatidylcholine polar portions - which lead the lipid chains to assembly in a more rigid fashion. The influence of Ca2+ is interpreted as due to lateral phase separation in the vesicle membrane. This phenomenon can be related to the formation or stabilization of ganglioside clusters on the vesicle surface.  相似文献   
45.
The functional role of nitric oxide (NO) was investigated in the systemic and pulmonary circulations of the South American rattlesnake, Crotalus durissus terrificus. Bolus, intra-arterial injections of the NO donor, sodium nitroprusside (SNP) caused a significant systemic vasodilatation resulting in a reduction in systemic resistance (Rsys). This response was accompanied by a significant decrease in systemic pressure and a rise in systemic blood flow. Pulmonary resistance (Rpul) remained constant while pulmonary pressure (Ppul) and pulmonary blood flow (Qpul) decreased. Injection of L-Arginine (L-Arg) produced a similar response to SNP in the systemic circulation, inducing an immediate systemic vasodilatation, while Rpul was unaffected. Blockade of NO synthesis via the nitric oxide synthase inhibitor, L-NAME, did not affect haemodynamic variables in the systemic circulation, indicating a small contribution of NO to the basal regulation of systemic vascular resistance. Similarly, Rpul and Qpul remained unchanged, although there was a significant rise in Ppul. Via injection of SNP, this study clearly demonstrates that NO causes a systemic vasodilatation in the rattlesnake, indicating that NO may contribute in the regulation of systemic vascular resistance. In contrast, the pulmonary vasculature seems far less responsive to NO.  相似文献   
46.
Immunomodulation by the ectopic expression of intracellular antibodies (‚intrabodies’) has a great potential for interfering with physiological or pathological functions in vivo in a highly specific manner. One of the major obstacles of this technology is the inability of most antibodies to properly fold and function in the reducing environment of the cytoplasm, which prevents the formation of essential disulfide bonds. We wished to assess the intracellular performance of antibodies derived from a semi-synthetic single-chain variable fragment (scFv) phage display library (‚F8 library’) built on a thermodynamically stable single-framework scaffold. To this purpose, we chose to modulate the infection of a pandemic plant pathogen, the cucumber mosaic virus (CMV). After in vitro ‚biopanning’ on immobilized virions, two scFvs were biochemically characterized, showing high affinity toward the antigen. They were transiently expressed at high yields as soluble molecules in the cytoplasm of Nicotiana benthamiana plants. Subsequently, they were expressed in the cytoplasm of transgenic tomato plants. Challenge with high viral dose showed that both scFvs were able to elicit a phenotypic effect and led to the identification of a transgenic line fully resistant to infection. In these plants, the scFv binds the virus in the inoculated leaves preventing viral long distance movement. This work represents the first demonstration that the ‚F8 library’ can be directly screened in vitro to rapidly isolate antigen-specific scFvs that act as effective intrabodies in vivo. These antibodies represent powerful tools to interfere with several intracellular targets, modulating pathogen infectivity and/or cellular metabolism.We dedicate this work to Piero Roggero who prematurely passed away on June 19th 2003.  相似文献   
47.
The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we assayed its antimicrobial activity against a broad spectrum of phytopathogenic bacteria and fungi. Synthetic KP exhibited antimicrobial activity in vitro towards Pseudomonas syringae, Erwinia carotovora, Botrytis cinerea, and Fusarium oxysporum. KP was also expressed in plants by using a Potato virus X (PVX)-derived vector as a fusion to the viral coat protein, yielding chimeric virus particles (CVPs) displaying the heterologous peptide. Purified CVPs showed enhanced antimicrobial activity against the above-mentioned plant pathogens and human pathogens such as Staphylococcus aureus and Candida albicans. Moreover, in vivo assays designed to challenge KP-expressing plants (as CVPs) with Pseudomonas syringae pv. tabaci showed enhanced resistance to bacterial attack. The results indicate that the PVX-based display system is a high-yield, rapid, and efficient method to produce and evaluate antimicrobial peptides in plants, representing a milestone for the large-scale production of high-added-value peptides through molecular farming. Moreover, KP is a promising molecule to be stably engineered in plants to confer broad-spectrum resistance to phytopathogens.  相似文献   
48.
Biomaterials research for the discovery of new generation nanoparticles is one of the most active areas of nanotechnoloy. In the search of nature-made nanometer-sized objects, plant virus particles appear as symmetrically defined entities that can be formed by protein self-assembly. In particular, in the field of plant virology, there is plenty of literature available describing the exploitation of plant viral cages to produce safe vaccine vehicles and nanoparticles for drug delivery. In this context, we have investigated on the use of the artichoke mottled crinkle virus (AMCV) capsid both as a carrier of immunogenic epitopes and for the delivery of anticancer molecules. A dual approach that combines both in silico tools and experimental virology was applied for the rational design of immunologically active chimeric virus-like particles (VLPs) carrying immunogenic peptides. The atomic structures of wild type (wt) and chimeric VLPs were obtained by homology modeling. The effects of insertion of the HIV-1 2F5 neutralizing epitope on the structural stability of chimeric VLPs were predicted and assessed by detailed inspection of the nanoparticle intersubunit interactions at atomic level. Wt and chimeric VLPs, exposing on their surface the 2F5 epitope, were successfully produced in plants. In addition, we demonstrated that AMCV capsids could also function as drug delivery vehicles able to load the chemotherapeutic drug doxorubicin. To our knowledge, this is the first systematic predictive and empirical research addressing the question of how this icosahedral virus can be used for the production of both VLPs and viral nanoparticles for biomedical applications.  相似文献   
49.
The use of antibodies to target their antigens in living cells is a powerful analytical tool for cell biology research. Not only can molecules be localized and visualized in living cells, but interference with cellular processes by antibodies may allow functional analysis down to the level of individual post-translational modifications and splice variants, which is not possible with genetic or RNA-based methods. To utilize the vast resource of available antibodies, an efficient system to deliver them into the cytosol from the outside is needed. Numerous strategies have been proposed, but the most robust and widely applicable procedure still remains to be identified, since a quantitative ranking of the efficiencies has not yet been done. To achieve this, we developed a novel efficiency evaluation method for antibody delivery based on a fusion protein consisting of a human IgG1 Fc and the recombination enzyme Cre (Fc-Cre). Applied to suitable GFP reporter cells, it allows the important distinction between proteins trapped in endosomes and those delivered to the cytosol. Further, it ensures viability of positive cells and is unsusceptible to fixation artifacts and misinterpretation of cellular localization in microscopy and flow cytometry. Very low cytoplasmic delivery efficiencies were found for various profection reagents and membrane penetrating peptides, leaving electroporation as the only practically useful delivery method for antibodies. This was further verified by the successful application of this method to bind antibodies to cytosolic components in living cells.  相似文献   
50.
Potato virus X coat protein is necessary for both cell-to-cell and phloem transfer, but it has not been clarified definitively whether it is needed in both movement phases solely as a component of the assembled particles or also of differently structured ribonucleoprotein complexes. To clarify this issue, we studied the infection progression of a mutant carrying an N-terminal deletion of the coat protein, which was used to construct chimeric virus particles displaying peptides selectively affecting phloem transfer or cell-to-cell movement. Nicotiana benthamiana plants inoculated with expression vectors encoding the wild-type, mutant and chimeric viral genomes were examined by microscopy techniques. These experiments showed that coat protein-peptide fusions promoting cell-to-cell transfer only were not competent for virion assembly, whereas long-distance movement was possible only for coat proteins compatible with virus particle formation. Moreover, the ability of the assembled PVX to enter and persist into developing xylem elements was revealed here for the first time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号