首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2022篇
  免费   180篇
  国内免费   2篇
  2204篇
  2023年   14篇
  2022年   28篇
  2021年   58篇
  2020年   25篇
  2019年   29篇
  2018年   48篇
  2017年   32篇
  2016年   70篇
  2015年   107篇
  2014年   95篇
  2013年   127篇
  2012年   182篇
  2011年   166篇
  2010年   113篇
  2009年   85篇
  2008年   126篇
  2007年   130篇
  2006年   133篇
  2005年   98篇
  2004年   99篇
  2003年   87篇
  2002年   80篇
  2001年   24篇
  2000年   22篇
  1999年   22篇
  1998年   19篇
  1997年   6篇
  1996年   11篇
  1995年   9篇
  1994年   15篇
  1993年   11篇
  1992年   11篇
  1991年   9篇
  1990年   14篇
  1989年   9篇
  1988年   9篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1983年   6篇
  1982年   4篇
  1980年   3篇
  1979年   4篇
  1978年   11篇
  1977年   4篇
  1975年   5篇
  1974年   3篇
  1973年   3篇
  1967年   3篇
  1966年   3篇
排序方式: 共有2204条查询结果,搜索用时 15 毫秒
991.
The lysin motif receptor-like kinase, NFP (Nod factor perception), is a key protein in the legume Medicago truncatula for the perception of lipochitooligosaccharidic Nod factors, which are secreted bacterial signals essential for establishing the nitrogen-fixing legume-rhizobia symbiosis. Predicted structural and genetic analyses strongly suggest that NFP is at least part of a Nod factor receptor, but few data are available about this protein. Characterization of a variant encoded by the mutant allele nfp-2 revealed the sensitivity of this protein to the endoplasmic reticulum quality control mechanisms, affecting its trafficking to the plasma membrane. Further analysis revealed that the extensive N-glycosylation of the protein is not essential for biological activity. In the NFP extracellular region, two CXC motifs and two other Cys residues were found to be involved in disulfide bridges, and these are necessary for correct folding and localization of the protein. Analysis of the intracellular region revealed its importance for biological activity but suggests that it does not rely on kinase activity. This work shows that NFP trafficking to the plasma membrane is highly sensitive to regulation in the endoplasmic reticulum and has identified structural features of the protein, particularly disulfide bridges involving CXC motifs in the extracellular region that are required for its biological function.  相似文献   
992.
Merkel Cell Polyomavirus (MCPyV) is associated with Merkel Cell carcinoma (MCC), a rare, aggressive skin cancer with neuroendocrine features. The causal role of MCPyV is highly suggested by monoclonal integration of its genome and expression of the viral large T (LT) antigen in MCC cells. We investigated and characterized MCPyV molecular features in MCC, respiratory, urine and blood samples from 33 patients by quantitative PCR, sequencing and detection of integrated viral DNA. We examined associations between either MCPyV viral load in primary MCC or MCPyV DNAemia and survival. Results were interpreted with respect to the viral molecular signature in each compartment. Patients with MCC containing more than 1 viral genome copy per cell had a longer period in complete remission than patients with less than 1 copy per cell (34 vs 10 months, P = 0.037). Peripheral blood mononuclear cells (PBMC) contained MCPyV more frequently in patients sampled with disease than in patients in complete remission (60% vs 11%, P = 0.00083). Moreover, the detection of MCPyV in at least one PBMC sample during follow-up was associated with a shorter overall survival (P = 0.003). Sequencing of viral DNA from MCC and non MCC samples characterized common single nucleotide polymorphisms defining 8 patient specific strains. However, specific molecular signatures truncating MCPyV LT were observed in 8/12 MCC cases but not in respiratory and urinary samples from 15 patients. New integration sites were identified in 4 MCC cases. Finally, mutated-integrated forms of MCPyV were detected in PBMC of two patients with disseminated MCC disease, indicating circulation of metastatic cells. We conclude that MCPyV molecular features in primary MCC tumour and PBMC may help to predict the course of the disease.  相似文献   
993.
994.

Background

To compare the cognitive profile of older patients with schizophrenia to those with other neuropsychiatric disorders assessed in a hospital-based memory clinic.

Methods

Demographic, clinical, and cognitive data of all patients referred to the memory clinic at the Centre for Addiction and Mental Health between April 1, 2006 and August 15, 2008 were reviewed. We then identified four groups of older patients with: (1) late-life schizophrenia (LLS) and no dementia or depression (DEP); (2) Alzheimer''s disease (AD); (3) DEP and no dementia or LLS; (4) normal cognition (NC) and no DEP or LLS.

Results

The four groups did not differ in demographic data except that patients with AD were about 12 years older than those with LLS. However, they differed on cognitive tests even after controlling for age. Patients with LLS were impaired on most cognitive tests in comparison with patients with NC but not on recalling newly learned verbal information at a short delay. They experienced equivalent performance on learning new verbal information in comparison with patients with AD, but better performance on all other tests of memory, including the ability to recall newly learned verbal information. Finally, they were more impaired than patients with DEP in overall memory.

Conclusions

Patients with LLS have a different cognitive profile than patients with AD or DEP. Particularly, memory impairment in LLS seems to be more pronounced in learning than recall. These findings suggest that cognitive and psychosocial interventions designed to compensate for learning deficits may be beneficial in LLS.  相似文献   
995.
996.
997.
Autophagy is a eukaryotic lysosomal bulk degradation system initiated by cytosolic cargo sequestration in autophagosomes. The Ser/Thr kinase mTOR has been shown to constitute a central role in controlling the initiation of autophagy by integrating multiple nutrient-dependent signaling pathways that crucially involves the activity of PI3K class III to generate the phosphoinositide PI(3)P. Recent reports demonstrate that the increase in cytosolic Ca2+ can induce autophagy by inhibition of mTOR via the CaMKK-α/β-mediated activation of AMPK. Here we demonstrate that Ca2+ signaling can additionally induce autophagy independently of the Ca2+-mediated activation of AMPK. First, by LC3-II protein monitoring in the absence or presence of lysosomal inhibitors we confirm that the elevation of cytosolic Ca2+ induces autophagosome generation and does not merely block autophagosome degradation. Further, we demonstrate that Ca2+-chelation strongly inhibits autophagy in human, mouse and chicken cells. Strikingly, we found that the PI(3)P-binding protein WIPI-1 (Atg18) responds to the increase of cytosolic Ca2+ by localizing to autophagosomal membranes (WIPI-1 puncta) and that Ca2+-chelation inhibits WIPI-1 puncta formation, although PI(3)P-generation is not generally affected by these Ca2+ flux modifications. Importantly, using AMPK-α1?/?α2?/? MEFs we show that thapsigargin application triggers autophagy in the absence of AMPK and does not involve complete mTOR inhibition, as detected by p70S6K phosphorylation. In addition, STO-609-mediated CaMKK-α/β inhibition decreased the level of thapsigargin-induced autophagy only in AMPK-positive cells. We suggest that apart from reported AMPK-dependent regulation of autophagic degradation, an AMPK-independent pathway triggers Ca2+-mediated autophagy, involving the PI(3)P-effector protein WIPI-1 and LC3.  相似文献   
998.
The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is an unusually attractive target for drug discovery since it contains five distinct drugable sites. The success of novel antiviral therapies will require nonnucleoside inhibitors to be active in at least patients infected with HCV of subtypes 1a and 1b. Therefore, the genotypic assessment of these agents against clinical isolates derived from genotype 1-infected patients is an important prerequisite for the selection of suitable candidates for clinical development. Here we report the 1a/1b subtype profiling of polymerase inhibitors that bind at each of the four known nonnucleoside binding sites. We show that inhibition of all of the clinical isolates tested is maintained, except for inhibitors that bind at the palm-1 binding site. Subtype coverage varies across chemotypes within this class of inhibitors, and inhibition of genotype 1a improves when hydrophobic contact with the polymerase is increased. We investigated if the polymorphism of the palm-1 binding site is the sole cause of the reduced susceptibility of subtype 1a to inhibition by 1,5-benzodiazepines by using reverse genetics, X-ray crystallography, and surface plasmon resonance studies. We showed Y415F to be a key determinant in conferring resistance on subtype 1a, with this effect being mediated through an inhibitor- and enzyme-bound water molecule. Binding studies revealed that the mechanism of subtype 1a resistance is faster dissociation of the inhibitor from the enzyme.One of the major challenges to overcome in the development of hepatitis C virus (HCV)-directed antivirals is the high propensity of the virus to mutate. This is due to the lack of proofreading capacity of the HCV NS5B RNA-dependent RNA polymerase (RdRp), which replicates the HCV RNA strand with an error rate of 10−2 to 10−3 nucleotide substitutions per site per year (17). The diversity of HCV has been recognized as six phylogenetically distinct groups, referred to as genotypes and, within each genotype, as subtypes (a, b, c, d, etc.) (44). HCV subtype 1b is the most prevalent genotype in the world, and subtype 1a is widely distributed in northern Europe and in the United States; subtypes 2a and 2b are common in North America, Europe, and Japan, and subtype 2c is found predominantly in Northern Italy; HCV genotype 3a is more prevalent in the Far East and has recently increased in Europe and in the United States, possibly due to the spread of the virus through intravenous drug use (11, 17, 18, 44, 46). Of the other genotypes, genotype 4 is common in Africa and to a lesser extent in Europe (11, 39), whereas genotypes 5 and 6 are found predominantly in southern Africa and Southeast Asia, respectively. Despite the availability of a standard of care for the treatment of hepatitis C, a combination of pegylated alpha interferon and ribavirin, many HCV-infected patients cannot be cured because of the frequent failure of the treatment, particularly in patients with genotype 1 and 4 infections, and perhaps also in those with genotype 6 infections (12, 35). In addition, tolerability issues associated with the standard of care lead to discontinuation of therapy in many patients (31). Therefore, major efforts have been made toward developing novel oral therapeutics that target a specific step of the HCV life cycle (45), with particular attention to HCV subtypes 1a and 1b, as they are the most common genotypes underserved by the current standard of care. Subtypes 1a and 1b are estimated to account for 57% and 17% of the HCV-infected patients in the United States (1) versus approximately 11% and 45% in Europe (11), respectively.The development of HCV polymerase nonnucleoside inhibitors (NNIs) has been successfully validated in phase II clinical trials (21, 24, 41). From the extensive screening of NS5B inhibitors that has been performed to date, several chemotypes have emerged as promising scaffolds, namely, the indole, thiophene, benzothiadiazine, and benzofuran analogs. Each of these NNIs targets four different binding pockets of the HCV polymerase, thumb-1 NNI-1 (10), thumb-2 NNI-2 (29, 48), palm-1 NNI-3 (9), and palm-2 NNI-4 (19), respectively. Historically, the screen for novel NS5B inhibitors was limited to representatives of genotype 1b only (3, 28) because the tools to target other genotypes were not yet available (16, 38, 40). Further assessment of these analogs, using enzyme isolates and intergenotypic chimeric replicons derived from clinical isolates, revealed that the genotypic coverage of the NNI-1 and -4 analogs extends beyond genotype 1, unlike the NNI-2 and -3 derivatives that typically inhibit genotype 1 only (16, 38). An additional drawback stems from the lower genetic barrier of the NNI-2 and -3 analogs in genotype 1 (25) and the reduced susceptibility in subtype 1a of the NNI-3 series (7, 16, 34, 38, 43). This effect was mostly attributed to the Y415F polymorphism observed in the NNI-3 binding site in subtype 1a (38).Here we report the 1a/1b subtype profiling of 1,5-benzodiazepine (1,5-BZD) HCV polymerase inhibitors that bind to the NNI-3 site (32, 36) using a panel of enzyme and chimeric replicons derived from clinical isolates, X-ray crystallography, and surface plasmon resonance (SPR) studies and compare these inhibitors to the four classes of NNIs by thoroughly assessing a representative of each nonnucleoside binding site in subtypes 1a and 1b.  相似文献   
999.
1000.
A series of substituted xanthenes was synthesized and screened for activity using DU-145, MCF-7, and HeLa cancer cell growth inhibition assays. The most potent compound, 9g ([N,N-diethyl]-9-hydroxy-9-(3-methoxyphenyl)-9H-xanthene-3-carboxamide), was found to inhibit cancer cell growth with IC50 values ranging from 36 to 50 μM across all three cancer cell lines. Structure–activity relationship (SAR) data is presented that indicates additional gains in potency may be realized through further derivatization of the compounds (e.g., the incorporation of a 7-fluoro substituent to 9g). Results are also presented that suggest the compounds function through a unique mechanism of action as compared to that of related acridine and xanthone anticancer agents (which have been shown to intercalate into DNA and inhibit topoisomerase II activity). A structural comparison of these compounds suggests the differences in function may be due to the structure of the xanthene heterocycle which adopts a nonplanar conformation about the pyran ring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号