首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2050篇
  免费   182篇
  国内免费   2篇
  2023年   12篇
  2022年   27篇
  2021年   59篇
  2020年   25篇
  2019年   30篇
  2018年   47篇
  2017年   33篇
  2016年   73篇
  2015年   109篇
  2014年   100篇
  2013年   128篇
  2012年   182篇
  2011年   168篇
  2010年   115篇
  2009年   85篇
  2008年   126篇
  2007年   131篇
  2006年   135篇
  2005年   99篇
  2004年   100篇
  2003年   86篇
  2002年   81篇
  2001年   26篇
  2000年   22篇
  1999年   24篇
  1998年   21篇
  1997年   7篇
  1996年   13篇
  1995年   10篇
  1994年   15篇
  1993年   11篇
  1992年   11篇
  1991年   9篇
  1990年   14篇
  1989年   9篇
  1988年   9篇
  1987年   7篇
  1986年   6篇
  1985年   6篇
  1984年   3篇
  1983年   7篇
  1982年   4篇
  1980年   3篇
  1979年   3篇
  1978年   11篇
  1975年   5篇
  1974年   3篇
  1973年   4篇
  1967年   3篇
  1966年   2篇
排序方式: 共有2234条查询结果,搜索用时 725 毫秒
201.
We have isolated delta-conotoxin EVIA (delta-EVIA), a conopeptide in Conus ermineus venom that contains 32 amino acid residues and a six-cysteine/four-loop framework similar to that of previously described omega-, delta-, microO-, and kappa-conotoxins. However, it displays low sequence homology with the latter conotoxins. delta-EVIA inhibits Na+ channel inactivation with unique tissue specificity upon binding to receptor site 6 of neuronal Na+ channels. Using amphibian myelinated axons and spinal neurons, we showed that delta-EVIA increases the duration of action potentials by inhibiting Na+ channel inactivation. delta-EVIA considerably enhanced nerve terminal excitability and synaptic efficacy at the frog neuromuscular junction but did not affect directly elicited muscle action potentials. The neuronally selective property of delta-EVIA was confirmed by showing that a fluorescent derivative of delta-EVIA labeled motor nerve endings but not skeletal muscle fibers. In a heterologous expression system, delta-EVIA inhibited inactivation of rat neuronal Na+ channel subtypes (rNaV1.2a, rNaV1.3, and rNaV1.6) but did not affect rat skeletal (rNaV1.4) and human cardiac muscle (hNaV1.5) Na+ channel subtypes. delta-EVIA, in the range of concentrations used, is the first conotoxin found to affect neuronal Na+ channels without acting on Na+ channels of skeletal and cardiac muscle. Therefore, it is a unique tool for discriminating voltage-sensitive Na+ channel subtypes and for studying the distribution and modulation mechanisms of neuronal Na+ channels, and it may serve as a lead to design new drugs adapted to treat diseases characterized by defective nerve conduction.  相似文献   
202.
203.
The effects of several agents, sugars, isotonic KCl, and a variety of drugs, on the structure of the axonal membranes of unmyelinated pike olfactory nerve have been studied by synchrotron radiation X-ray scattering experiments. The main effects of the sugars are: (i) to increase the electron density of the extra-axonal space and thereby yield the absolute scale of the electron density profile; (ii) to osmotically stress the membrane and thus yield its elastic modulus of area compressibility, since the related strain, thickness dilation, is directly determined by the X-ray scattering experiments. Exposure to isotonic KCl, a depolarizing agent, induces membrane thickness to increase. The energy liberated in this process is a function of the amplitude of the dilation and of the elastic modulus of the membrane. This energy turns out to be close to the thermal energy liberated by the pike olfactory nerve during the initial phase of action potential that has previously been measured by others. Electrical depolarization thus seems to be accompanied by a thickness dilation of the axonal membrane. Another effect of isotonic KCl is to induce a large fraction of the membranes to pair by tight apposition of their extra-axonal faces. Local anaesthetics and some drugs have the effect of altering membrane thickness. All these observations are interpreted in terms of a modulation of the conformational disorder of the hydrocarbon chains of the lipid molecules.  相似文献   
204.
Synchrotron radiation X-ray scattering experiments were performed on unmyelinated pike olfactory nerves. The difference between the meridional and the equatorial traces of the 2-D spectra yielded the 1-D equatorial intensity of the macromolecular components oriented with respect to the nerve: axonal membranes, microtubules and other cytoskeletal filaments. These 1-D spectra display a diffuse band typical of bilayer membranes and, at small s, a few sharper bands reminiscent of microtubules. All the spectra merge at large s. The intensity of the axonal membrane was determined via a noise analysis of the nerve-dependent spectra, involving also the notion that the thickness of the membrane is finite. The shape of the intensity function indicated that the electron density profile is not centrosymmetric. The knowledge of intensity and thickness paved the way to the electron density profile via an ab initio solution of the phase problem. An iterative procedure was adopted: (i) choose the lattice D of a 1-D pseudo crystal, interpolate the intensity at the points sh = h/D, adopt an arbitrary set of initial phases and compute the profile; (ii) determine the phases corresponding to this profile truncated by the thickness D/2; (iii) repeat the operation with the updated phases until a stable result is obtained. This iterative procedure was carried out for different D-values, starting in each case from randomly generated phases: stable results were obtained in less than 10,000 iterations. Most importantly, for D in the vicinity of 200 A, the overwhelming majority of the profiles were congruent with each other. These profiles were strongly asymmetric and otherwise typical of biological membranes.  相似文献   
205.
206.
207.
Some superfamilies contain large numbers of protein domains with very different functions. The ability to refine the functional classification of domains within these superfamilies is necessary for better understanding the evolution of functions and to guide function prediction of new relatives. To achieve this, a suitable starting point is the detailed analysis of functional divisions and mechanisms of functional divergence in a single superfamily. Here, we present such a detailed analysis in the superfamily of HUP domains. A biologically meaningful functional classification of HUP domains is obtained manually. Mechanisms of function diversification are investigated in detail using this classification. We observe that structural motifs play an important role in shaping broad functional divergence, whereas residue-level changes shape diversity at a more specific level. In parallel we examine the ability of an automated protocol to capture the biologically meaningful classification, with a view to automatically extending this classification in the future.  相似文献   
208.
AMP-activated protein kinase (AMPK) is an energy sensor essential for maintaining cellular energy homeostasis. Here, we report that AMPKα1 is the predominant isoform of AMPK in murine erythrocytes and mice globally deficient in AMPKα1 (AMPKα1−/−), but not in those lacking AMPKα2, and the mice had markedly enlarged spleens with dramatically increased proportions of Ter119-positive erythroid cells. Blood tests revealed significantly decreased erythrocyte and hemoglobin levels with increased reticulocyte counts and elevated plasma erythropoietin concentrations in AMPKα1−/− mice. The life span of erythrocytes from AMPKα1−/− mice was less than that in wild-type littermates, and the levels of reactive oxygen species and oxidized proteins were significantly increased in AMPKα1−/− erythrocytes. In keeping with the elevated oxidative stress, treatment of AMPKα1−/− mice with the antioxidant, tempol, resulted in decreased reticulocyte counts and improved erythrocyte survival. Furthermore, the expression of Foxo3 and reactive oxygen species scavenging enzymes was significantly decreased in erythroblasts from AMPKα1−/− mice. Collectively, these results establish an essential role for AMPKα1 in regulating oxidative stress and life span in erythrocytes.  相似文献   
209.
The biogenesis of nuclear pore complexes (NPCs) represents a paradigm for the assembly of high-complexity macromolecular structures. So far, only three integral pore membrane proteins are known to function redundantly in NPC anchoring within the nuclear envelope. Here, we describe the identification and functional characterization of Pom33, a novel transmembrane protein dynamically associated with budding yeast NPCs. Pom33 becomes critical for yeast viability in the absence of a functional Nup84 complex or Ndc1 interaction network, which are two core NPC subcomplexes, and associates with the reticulon Rtn1. Moreover, POM33 loss of function impairs NPC distribution, a readout for a subset of genes required for pore biogenesis, including members of the Nup84 complex and RTN1. Consistently, we show that Pom33 is required for normal NPC density in the daughter nucleus and for proper NPC biogenesis and/or stability in the absence of Nup170. We hypothesize that, by modifying or stabilizing the nuclear envelope–NPC interface, Pom33 may contribute to proper distribution and/or efficient assembly of nuclear pores.  相似文献   
210.
Galpha(i)‐coupled receptors comprise a diverse family of receptors that induce transformation by largely unknown mechanisms. We previously found that the Galpha(i)‐coupled dopamine‐D2short (D2S) receptor transforms Balb‐D2S cells via Gαi3. To identify new Gαi effectors, a yeast two‐hybrid screen was done using constitutively active Gαi3‐Q204L as bait, and tumor necrosis factor‐alpha (TNFα)‐induced protein 8 (TNFAIP8, SCC‐S2/NDED/GG2‐1) was identified. In contrast, TNFAIP8‐related TIPE1 and TIPE2 showed a very weak interaction with Gαi3. In yeast mating, in vitro pull‐down, co‐immunoprecipitation and bioluminescence resonance energy transfer (BRET) assays, TNFAIP8 preferentially interacted with activated Gαi proteins, consistent with direct Gαi‐TNFAIP8 coupling. Over‐expression or depletion of TNFAIP8 using antisense constructs in Balb‐D2S cells did not affect D2S‐induced signaling to Gαi‐dependent inhibition of cAMP. In contrast, antisense depletion of TNFAIP8 completely inhibited spontaneous and D2S‐induced foci formation, consistent with a role for TNFAIP8 in Gαi‐dependent transformation. To address possible mechanisms, the effect of D2S signaling via TNFAIP8 on TNFα action was examined. D2S receptor activation inhibited TNFα‐induced cell death in Balb‐D2S cells, but not in cells depleted of TNFAIP8. However, depletion of TNFAIP8 did not prevent D2S‐induced inhibition of TNFα‐mediated caspase activation, suggesting that D2S/TNFAIP8‐induced protection from TNFα‐induced cell death is caspase‐independent. The data suggest that Gαi‐TNFAIP8‐mediated rescue of pre‐oncogenic cells enhances progression to oncogenic transformation, providing a selective target to inhibit cellular transformation. J. Cell. Physiol. 225: 865–874, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号