首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2131篇
  免费   216篇
  国内免费   2篇
  2023年   12篇
  2022年   29篇
  2021年   59篇
  2020年   25篇
  2019年   30篇
  2018年   49篇
  2017年   36篇
  2016年   75篇
  2015年   113篇
  2014年   98篇
  2013年   131篇
  2012年   185篇
  2011年   170篇
  2010年   116篇
  2009年   89篇
  2008年   135篇
  2007年   137篇
  2006年   137篇
  2005年   100篇
  2004年   105篇
  2003年   88篇
  2002年   82篇
  2001年   28篇
  2000年   27篇
  1999年   30篇
  1998年   23篇
  1997年   10篇
  1996年   15篇
  1995年   10篇
  1994年   16篇
  1993年   14篇
  1992年   18篇
  1991年   10篇
  1990年   14篇
  1989年   13篇
  1988年   10篇
  1987年   11篇
  1986年   10篇
  1985年   9篇
  1984年   4篇
  1983年   7篇
  1982年   6篇
  1981年   5篇
  1979年   8篇
  1978年   14篇
  1977年   3篇
  1975年   5篇
  1974年   5篇
  1973年   3篇
  1967年   3篇
排序方式: 共有2349条查询结果,搜索用时 31 毫秒
81.
Beginning in the early 1990s, the balsam fir sawfly (Neodiprion abietis) became a significant defoliating insect of precommercially thinned balsam fir (Abies balsamea (L.) Mill.) stands in western Newfoundland, Canada. In 1997, a nucleopolyhedrovirus (NeabNPV) was isolated from the balsam fir sawfly and, as no control measures were then available, NeabNPV was developed for the biological control of balsam fir sawfly. In order to register NeabNPV for operational use under the Canadian Pest Control Products Act, research was carried out in a number of areas including NeabNPV field efficacy, non-target organism toxicology, balsam fir sawfly ecology and impact on balsam fir trees, and NeabNPV genome sequencing and analysis. As part of the field efficacy trials, approximately 22 500 hectares of balsam fir sawfly-infested forest were aerially treated with NeabNPV between 2000 and 2005. NeabNPV was found to be safe, efficacious, and economical for the suppression of balsam fir sawfly outbreak populations. Conditional registration for the NeabNPV-based product, Abietiv™, was received from the Pest Management Regulatory Agency (Health Canada) in April 2006. In July 2006, Abietiv was applied by spray airplanes to 15 000 ha of balsam fir sawfly-infested forest in western Newfoundland in an operational control program.   相似文献   
82.
83.
84.
Coral reefs provide a range of important services to humanity, which are underpinned by community‐level ecological processes such as coral calcification. Estimating these processes relies on our knowledge of individual physiological rates and species‐specific abundances in the field. For colonial animals such as reef‐building corals, abundance is frequently expressed as the relative surface cover of coral colonies, a metric that does not account for demographic parameters such as coral size. This may be problematic because many physiological rates are directly related to organism size, and failure to account for linear scaling patterns may skew estimates of ecosystem functioning. In the present study, we characterize the scaling of three physiological rates — calcification, respiration, and photosynthesis — considering the colony size for six prominent, reef‐building coral taxa in Mo''orea, French Polynesia. After a seven‐day acclimation period in the laboratory, we quantified coral physiological rates for three hours during daylight (i.e., calcification and gross photosynthesis) and one hour during night light conditions (i.e., dark respiration). Our results indicate that area‐specific calcification rates are higher for smaller colonies across all taxa. However, photosynthesis and respiration rates remain constant over the colony‐size gradient. Furthermore, we revealed a correlation between the demographic dynamics of coral genera and the ratio between net primary production and calcification rates. Therefore, intraspecific scaling of reef‐building coral physiology not only improves our understanding of community‐level coral reef functioning but it may also explain species‐specific responses to disturbances.  相似文献   
85.
86.
  1. Soil C is the largest C pool in forest ecosystems that contributes to C sequestration and mitigates climate change. Tree diversity enhances forest productivity, so diversifying the tree species composition, notably in managed forests, could increase the quantity of organic matter being transferred to soils and alter other soil properties relevant to the C cycle.
  2. A ten‐year‐old tree diversity experiment was used to study the effects of tree identity and diversity (functional and taxonomic) on soils. Surface (0–10 cm) mineral soil was repeatedly measured for soil C concentration, C:N ratio, pH, moisture, and temperature in twenty‐four tree species mixtures and twelve corresponding monocultures (replicated in four blocks).
  3. Soil pH, moisture, and temperature responded to tree diversity and identity. Greater productivity in above‐ and below‐ground tree components did not increase soil C concentration. Soil pH increased and soil moisture decreased with functional diversity, more specifically, when species had different growth strategies and shade tolerances. Functional identity affected soil moisture and temperature, such that tree communities with more slow‐growing and shade‐tolerant species had greater soil moisture and temperature. Higher temperature was measured in communities with broadleaf‐deciduous species compared to communities with coniferous‐evergreen species.
  4. We conclude that long‐term soil C cycling in forest plantations will likely respond to changes in soil pH, moisture, and temperature that is mediated by tree species composition, since tree species affect these soil properties through their litter quality, water uptake, and physical control of soil microclimates.
  相似文献   
87.
88.
Syntrophins are modular adapter proteins that link ion channels and signaling proteins to dystrophin and its homologues. A yeast two-hybrid screen of a human brain cDNA library using the PDZ domain of gamma 1- syntrophin, a recently identified brain-specific isoform, yielded overlapping clones encoding the C terminus of diacylglycerol kinase-zeta (DGK-zeta), an enzyme that converts diacylglycerol into phosphatidic acid. In biochemical assays, the C terminus of DGK-zeta, which contains a consensus PDZ-binding motif, was found to be necessary and sufficient for association with gamma 1-syntrophin. When coexpressed in HeLa cells, DGK-zeta and gamma 1-syntrophin formed a stable complex that partitioned between the cytoplasm and nucleus. DGK-zeta translocates from the cytosol to the nucleus, a process negatively regulated by protein kinase C phosphorylation. We found that DGK-zeta recruits gamma 1-syntrophin into the nucleus and that the PDZ-binding motif is required. Disrupting the interaction altered the intracellular localization of both proteins; DGK-zeta accumulated in the nucleus, whereas gamma 1-syntrophin remained in the cytoplasm. The level of endogenous syntrophins in the nucleus of HeLa cells also reflected the amount of nuclear DGK-zeta. In the brain, DGK-zeta and gamma 1-syntrophin were colocalized in cell bodies and dendrites of cerebellar Purkinjie neurons and other neuronal cell types, suggesting that their interaction is physiologically relevant. Moreover, coimmunoprecipitation and pull-down experiments from brain extracts and cells suggest that DGK-zeta, gamma 1-syntrophin, and dystrophin form a ternary complex. Collectively, our results suggest that gamma 1-syntrophin participates in regulating the subcellular localization of DGK-zeta to ensure correct termination of diacylglycerol signaling.  相似文献   
89.
In the causative agent of syphilis, Treponema pallidum, the gene encoding 3-phosphoglycerate mutase, gpm, is part of a six-gene operon (tro operon) that is regulated by the Mn-dependent repressor TroR. Since substrate-level phosphorylation via the Embden-Meyerhof pathway is the principal way to generate ATP in T. pallidum and Gpm is a key enzyme in this pathway, Mn could exert a regulatory effect on central metabolism in this bacterium. To study this, T. pallidum gpm was cloned, Gpm was purified from Escherichia coli, and antiserum against the recombinant protein was raised. Immunoblots indicated that Gpm was expressed in freshly extracted infective T. pallidum. Enzyme assays indicated that Gpm did not require Mn(2+) while 2,3-diphosphoglycerate (DPG) was required for maximum activity. Consistent with these observations, Mn did not copurify with Gpm. The purified Gpm was stable for more than 4 h at 25 degrees C, retained only 50% activity after incubation for 20 min at 34 degrees C or 10 min at 37 degrees C, and was completely inactive after 10 min at 42 degrees C. The temperature effect was attenuated when 1 mM DPG was added to the assay mixture. The recombinant Gpm from pSLB2 complemented E. coli strain PL225 (gpm) and restored growth on minimal glucose medium in a temperature-dependent manner. Increasing the temperature of cultures of E. coli PL225 harboring pSLB2 from 34 to 42 degrees C resulted in a 7- to 11-h period in which no growth occurred (compared to wild-type E. coli). These data suggest that biochemical properties of Gpm could be one contributing factor to the heat sensitivity of T. pallidum.  相似文献   
90.
Marine snails of the genus Conus, as they are carnivorous predators, have a venom apparatus used to capture their prey. The toxins contained in the venoms of Conidae, called conotoxins, are of a particular high degree of diversity and represent powerful tools in the neuroscience field. Indeed, these toxins specifically bind with a high affinity to receptors and ionic channels. Therefore, they provide original pharmacological tools which receive increasing investigation both to identify and study some functions of the nervous systems and to characterize new types and closely related subtypes of receptors or ionic channels. The voltage-gated sodium channel, because of its fundamental role in cell membrane excitability, is the specific target of a large number of animal and vegetal toxins. Actually, at least seven toxin receptor sites have been identified on this channel-protein. These toxins, and in particular conotoxins, are used to precise the role of different types and/or closely related subtypes of sodium channels in the peripheral and central nervous systems. The focus of the present review is to summarize our current knowledge of the consequences of physiological interactions between different conotoxin families and sodium channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号