首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2069篇
  免费   180篇
  国内免费   2篇
  2023年   12篇
  2022年   26篇
  2021年   58篇
  2020年   25篇
  2019年   30篇
  2018年   47篇
  2017年   32篇
  2016年   71篇
  2015年   110篇
  2014年   99篇
  2013年   127篇
  2012年   182篇
  2011年   169篇
  2010年   114篇
  2009年   86篇
  2008年   127篇
  2007年   130篇
  2006年   133篇
  2005年   97篇
  2004年   100篇
  2003年   87篇
  2002年   82篇
  2001年   24篇
  2000年   23篇
  1999年   22篇
  1998年   19篇
  1997年   7篇
  1996年   11篇
  1995年   9篇
  1994年   15篇
  1993年   11篇
  1992年   15篇
  1991年   12篇
  1990年   15篇
  1989年   10篇
  1988年   18篇
  1987年   9篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1980年   3篇
  1979年   4篇
  1978年   13篇
  1977年   3篇
  1975年   5篇
  1974年   7篇
  1973年   5篇
  1967年   3篇
排序方式: 共有2251条查询结果,搜索用时 15 毫秒
881.
Glucocorticoids inhibit inflammation by acting through the glucocorticoid receptor (GR) and powerfully repressing NF-kappaB function. Ligand binding to the C-terminal of GR promotes the nuclear translocation of the receptor and binding to NF-kappaB through the GR DNA binding domain. We sought how ligand recognition influences the interaction between NF-kappaB and GR. Both dexamethasone (agonist) and RU486 (antagonist) promote efficient nuclear translocation, and we show occupancy of the same intranuclear compartment as NF-kappaB with both ligands. However, unlike dexamethasone, RU486 had negligible activity to inhibit NF-kappaB transactivation. This failure may stem from altered co-factor recruitment or altered interaction with NF-kappaB. Using both glutathione S-transferase pull-down and bioluminescence resonance energy transfer approaches, we identified a major glucocorticoid ligand effect on interaction between the GR and the p65 component of NF-kappaB, with RU486 inhibiting recruitment compared with dexamethasone. Using the bioluminescence resonance energy transfer assay, we found that RU486 efficiently recruited NCoR to the GR, unlike dexamethasone, which recruited SRC1. Therefore, RU486 promotes differential protein recruitment to both the C-terminal and DNA binding domain of the receptor. Importantly, using chromatin immunoprecipitation, we show that impaired interaction between GR and p65 with RU486 leads to reduced recruitment of the GR to the NF-kappaB-responsive region of the interleukin-8 promoter, again in contrast to dexamethasone that significantly increased GR binding. We demonstrate that ligand-induced conformation of the GR C-terminal has profound effects on the functional surface generated by the DNA binding domain of the GR. This has implications for understanding ligand-dependent interdomain communication.  相似文献   
882.
883.
884.
885.
In the gastric pathogen Helicobacter pylori, catalase (KatA) and alkyl hydroperoxide reductase (AhpC) are two highly abundant enzymes that are crucial for oxidative stress resistance and survival of the bacterium in the host. Here we report a connection unidentified previously between the two stress resistance enzymes. We observed that the catalase in ahpC mutant cells in comparison with the parent strain is inactivated partially (approximately 50%). The decrease of catalase activity is well correlated with the perturbation of the heme environment in catalase, as detected by electron paramagnetic resonance spectroscopy. To understand the reason for this catalase inactivation, we examined the inhibitory effects of hydroperoxides on H. pylori catalase (either present in cell extracts or added to the purified enzyme) by monitoring the enzyme activity and the EPR signal of catalase. H. pylori catalase is highly resistant to its own substrate, without the loss of enzyme activity by treatment with a molar ratio of 1:3000 H2O2. However, it inactivated is by lower concentrations of organic hydroperoxides (the substrate of AhpC). Treatment with a molar ratio of 1:400 t-butyl hydroperoxide resulted in an inactivation of catalase by approximately 50%. UV-visible absorption spectra indicated that the catalase inactivation by organic hydroperoxides is caused by the formation of a catalytically incompetent compound II species. To further support the idea that organic hydroperoxides, which accumulate in the ahpC mutant cells, are responsible for the inactivation of catalase, we compared the level of lipid peroxidation found in ahpC mutant cells with that found in wild type cells. The results showed that the total amount of extractable lipid hydroperoxides in the ahpC mutant cells is approximately three times that in the wild type cells. Our findings reveal a novel role of the organic hydroperoxide detoxification system in preventing catalase inactivation.  相似文献   
886.
A pink-pigmented symbiotic bacterium was isolated from hybrid poplar tissues (Populus deltoides x nigra DN34). The bacterium was identified by 16S and 16S-23S intergenic spacer ribosomal DNA analysis as a Methylobacterium sp. (strain BJ001). The isolated bacterium was able to use methanol as the sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. The bacterium in pure culture was shown to degrade the toxic explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine (HMX). [U-ring-(14)C]TNT (25 mg liter(-1)) was fully transformed in less than 10 days. Metabolites included the reduction derivatives amino-dinitrotoluenes and diamino-nitrotoluenes. No significant release of (14)CO(2) was recorded from [(14)C]TNT. In addition, the isolated methylotroph was shown to transform [U-(14)C]RDX (20 mg liter(-1)) and [U-(14)C]HMX (2.5 mg liter(-1)) in less than 40 days. After 55 days of incubation, 58.0% of initial [(14)C]RDX and 61.4% of initial [(14)C]HMX were mineralized into (14)CO(2). The radioactivity remaining in solution accounted for 12.8 and 12.7% of initial [(14)C]RDX and [(14)C]HMX, respectively. Metabolites detected from RDX transformation included a mononitroso RDX derivative and a polar compound tentatively identified as methylenedinitramine. Since members of the genus Methylobacterium are distributed in a wide diversity of natural environments and are very often associated with plants, Methylobacterium sp. strain BJ001 may be involved in natural attenuation or in situ biodegradation (including phytoremediation) of explosive-contaminated sites.  相似文献   
887.
The protozoan parasite Marteilia refringens has been partly responsible for the severe decrease in the production of the European flat oyster Ostrea edulis Linnaeus in France since the 1970s. The calanoid copepod Paracartia grani Sars was recently found to be a host for M. refringens in French shallow-water oyster ponds ('claires'). This study reconsidered M. refringens transmission dynamics in the light of this finding, taking into account not only oyster infection dynamics and environmental factors but also data concerning the copepod host. P. grani population dynamics in the claire under study revealed that this species is the dominant planktonic copepod in this confined ecosystem. During winter, M. refringens overwintered in O. edulis, with P. grani existing only as resting eggs in the sediment. The increase in temperature in spring controlled and synchronized both the release of M. refringens sporangia in the oyster feces, and the hatching of the benthic resting eggs of the copepod. Infection of oysters by M. refringens was limited to June, July and August, coinciding with (1) the highest temperature recorded in the claire, and (2) the highest abundance of P. grani. PCR detection of M. refringens in P. grani during the summer period was linked to the release of parasite sporangia by the oyster. Our results are supported by previous results on the effective transmission of this parasite from the oyster to the copepod.  相似文献   
888.
This study shows that water stress is not countered in eggs of the lone star tick, Amblyomma americanum (L.), using water vapor, and suggests involvement of liquid water as a developmental cue. Eggs fail to maintain an equilibrium water content in subsaturated air, hence, gain not equal to loss, with net water losses occurring at relative humidities near saturation and these eggs exhibit a three-fold drop in viability, but not incubation period, as compared to eggs held in saturated air. Amblyomma americanum eggs are stenohydric and feature low 58% water content, slow water losses <1%/h, and an impermeable chorion wherein the Arrhenius activation energy, Ea = -66J/K, is suppressed. Thus, enhancement of water retention, not water vapor absorption, permits eggs to resist desiccation.  相似文献   
889.
Phospholipase C-gamma2 (PLC-gamma2) plays an important role in B-cell signaling. Phosphorylation of various tyrosine residues of PLC-gamma2 has been implicated in regulation of its lipase activity. With the use of antibodies specific for each of the putative phosphorylation sites, we have now shown that PLC-gamma2 is phosphorylated on Y753, Y759, and Y1217 in response to engagement of the B-cell receptor in Ramos cells, as well as in murine splenic B cells. In cells stimulated maximally via this receptor, the extent of phosphorylation of Y1217 was three times that of Y753 or of Y759. Stimulation of Jurkat T cells or platelets via their immunoreceptors also elicited phosphorylation of Y753 and Y759 but not that of Y1217. A basal level of phosphorylation of Y753 was apparent in unstimulated lymphocytes. The extent of phosphorylation of Y753 and Y759, but not that of Y1217, correlated with the lipase activity of PLC-gamma2. Examination of the effects of various pharmacological inhibitors and of RNA interference in Ramos cells suggested that Btk is largely, but not completely, responsible for phosphorylation of Y753 and Y759, whereas phosphorylation of Y1217 is independent of Btk. Finally, phosphorylation of Y1217 and that of Y753 and Y759 occurred on different PLC-gamma2 molecules.  相似文献   
890.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号