首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   21篇
  2023年   1篇
  2022年   6篇
  2021年   7篇
  2020年   4篇
  2019年   1篇
  2018年   4篇
  2017年   10篇
  2016年   9篇
  2015年   4篇
  2014年   11篇
  2013年   16篇
  2012年   28篇
  2011年   27篇
  2010年   24篇
  2009年   12篇
  2008年   16篇
  2007年   23篇
  2006年   19篇
  2005年   15篇
  2004年   17篇
  2003年   15篇
  2002年   14篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有325条查询结果,搜索用时 734 毫秒
81.
Sequence-based typing of a breeding population (G1) consisting of 84 Atlantic salmon individuals revealed the presence of 7 Sasa-DAA and 7 Sasa-DAB expressed alleles. Subsequent typing of 1,182 individuals belonging to 33 families showed that Sasa-DAA and Sasa-DAB segregate as haplotypes. In total seven unique haplotypes were established, with frequencies in the population studied ranging from 0.01 to 0.49. Each haplotype is characterized by a unique minisatellite marker size embedded in the 3' untranslated region of the Sasa-DAA gene. These data corroborate the fact that Atlantic salmon express a single class II locus, consisting of tightly linked class II A and class B genes. The seven haplotypes give rise to 15 genotypes with frequencies varying between 0.01 and 0.23; 21 class II homozygous individuals were present in the G1 population. We also studied the frequency distribution in another breeding population (G4, n=374) using the minisatellite marker. Only one new marker size was present, suggesting the presence of one new class II haplotype. The marker frequency distribution in the G4 population differed markedly from the G1 population. The genomic organizations of two Sasa-DAA and Sasa-DAB alleles were determined, and supported the notion that these alleles belong to the same locus. In contrast to other studies of salmonid class II sequences, phylogenetic analyses of brown trout and Atlantic class II A and class II B sequences provided support for trans-species polymorphism.  相似文献   
82.
The accuracy ofthe acoustic reflections method for the evaluation of human nasalairway geometry is determined by the physical limitations of thetechnique and also by the in vivo deviations from the assumptions ofthe technique. The present study 1)examines the sound loss caused by nonrigidity of the nasal mucosa andviscous loss caused by complex geometry and its influence on theestimation of the acoustic area-distance function;2) examines the optimal relation between sampling frequency and low-pass filtering, and 3) evaluates advantages of breathingHe-O2 during the measurements onaccuracy. Measurements made in eight plastic models, withcavities exactly identical to the "living" nasal cavities,revealed only minor effects of nonrigidity of the nasal mucosa. Thiswas confirmed by an electrical analog model, based on laser vibrometryadmittance measurements of the nasal mucosa, which indicated that theerror in the acoustic measurements caused by wall motion isinsignificant. The complex geometry of the nasal cavity per se (i.e.,departure from circular) showed no significant effects on themeasurements. Low-pass filtering of the signal is necessary to cut offcross modes arising in the nasal cavity. Computer simulations andmeasurements in models showed that the sampling frequency should beapproximately four times the low-pass filtering frequency (i.e., twicethe Nyquist frequency) to avoid influence on the result. No advantagewas found for the the use of He-O2vs. air in the nasal cavity.

  相似文献   
83.
Chaetomium thermophilium was isolated from composting municipal solid waste during the thermophilic stage of the process. C. thermophilium, a cellulolytic fungus, exhibited laccase activity when it was grown at 45°C both in solid media and in liquid media. Laccase activity reached a peak after 24 h in liquid shake culture. Laccase was purified by ultrafiltration, anion-exchange chromatography, and affinity chromatography. The purified enzyme was identified as a glycoprotein with a molecular mass of 77 kDa and an isoelectric point of 5.1. The laccase was stable for 1 h at 70°C and had half-lives of 24 and 12 h at 40 and 50°C, respectively. The enzyme was stable at pH 5 to 10, and the optimum pH for enzyme activity was 6. The purified laccase efficiently catalyzed a wide range of phenolic substrates but not tyrosine. The highest levels of affinity were the levels of affinity to syringaldazine and hydroxyquinone. The UV-visible light spectrum of the purified laccase had a peak at 604 nm (i.e., Cu type I), and the activity was strongly inhibited by Cu-chelating agents. When the hydrophobic acid fraction (the humic fraction of the water-soluble organic matter obtained from municipal solid waste compost) was added to a reaction assay mixture containing laccase and guaiacol, polymerization took place and a soluble polymer was formed. C. thermophilium laccase, which is produced during the thermophilic stage of composting, can remain active for a long period of time at high temperatures and alkaline pH values, and we suggest that this enzyme is involved in the humification process during composting.  相似文献   
84.
Maximum likelihood (ML) (Neyman, 1971) is an increasingly popular optimality criterion for selecting evolutionary trees. Finding optimal ML trees appears to be a very hard computational task--in particular, algorithms and heuristics for ML take longer to run than algorithms and heuristics for maximum parsimony (MP). However, while MP has been known to be NP-complete for over 20 years, no such hardness result has been obtained so far for ML. In this work we make a first step in this direction by proving that ancestral maximum likelihood (AML) is NP-complete. The input to this problem is a set of aligned sequences of equal length and the goal is to find a tree and an assignment of ancestral sequences for all of that tree's internal vertices such that the likelihood of generating both the ancestral and contemporary sequences is maximized. Our NP-hardness proof follows that for MP given in (Day, Johnson and Sankoff, 1986) in that we use the same reduction from Vertex Cover; however, the proof of correctness for this reduction relative to AML is different and substantially more involved.  相似文献   
85.
Fliess A  Motro B  Unger R 《Proteins》2002,48(2):377-387
An important question in protein evolution is to what extent proteins may have undergone swaps (switches of domain or fragment order) during evolution. Such events might have occurred in several forms: Swaps of short fragments, swaps of structural and functional motifs, or recombination of domains in multidomain proteins. This question is important for the theoretical understanding of the evolution of proteins, and has practical implications for using swaps as a design tool in protein engineering. In order to analyze the question systematically, we conducted a large scale survey of possible swaps and permutations among all pairs of protein from the Swissport database. A swap is defined as a specific kind of sequence mutation between two proteins in which two fragments that appear in both sequences have different relative order in the two sequences. For example, aXbYc and dYeXf are defined as a swap, where X and Y represent sequence fragments that switched their order. Identifying such swaps is difficult using standard sequence comparison packages. One of the main problems in the analysis stems from the fact that many sequences contain repeats, which may be identified as false-positive swaps. We have used two different approaches to detect pairs of proteins with swaps. The first approach is based on the predefined list of domains in Pfam. We identified all the proteins that share at least two domains and analyzed their relative order, looking for pairs in which the order of these domains was switched. We designed an algorithm to distinguish between real swaps and duplications. In the second approach, we used Blast to detect pairs of proteins that share several fragments. Then, we used an automatic procedure to select pairs that are likely to contain swaps. Those pairs were analyzed visually, using a graphical tool, to eliminate duplications. Combining these approaches, about 140 different cases of swaps in the Swissprot database were found (after eliminating multiple pairs within the same family). Some of the cases have been described in the literature, but many are novel examples. Although each new example identified may be interesting to analyze, our main conclusion is that cases of swaps are rare in protein evolution. This observation is at odds with the common view that proteins are very modular to the point that modules (e.g., domains) can be shuffled between proteins with minimal constraints. Our study suggests that sequential constraints, i.e., the relative order between domains, are highly conserved.  相似文献   
86.
The anterior cingulate cortex (ACC) plays an important role in higher brain functions including learning, memory, and persistent pain. Long-term potentiation of excitatory synaptic transmission has been observed in the ACC after digit amputation, which might contribute to plastic changes associated with the phantom pain. Here we report a long-lasting membrane potential depolarization in ACC neurons of adult rats after digit amputation in vivo. Shortly after digit amputation of the hind paw, the membrane potential of intracellularly recorded ACC neurons quickly depolarized from ~-70 mV to ~-15 mV and then slowly repolarized. The duration of this amputation-induced depolarization was about 40 min. Intracellular staining revealed that these neurons were pyramidal neurons in the ACC. The depolarization is activity-dependent, since peripheral application of lidocaine significantly reduced it. Furthermore, the depolarization was significantly reduced by a NMDA receptor antagonist MK-801. Our results provide direct in vivo electrophysiological evidence that ACC pyramidal cells undergo rapid and prolonged depolarization after digit amputation, and the amputation-induced depolarization in ACC neurons might be associated with the synaptic mechanisms for phantom pain.  相似文献   
87.
Macromolecular oligomeric assemblies are involved in many biochemical processes of living organisms. The benefits of such assemblies in crowded cellular environments include increased reaction rates, efficient feedback regulation, cooperativity and protective functions. However, an atom‐level structural determination of large assemblies is challenging due to the size of the complex and the difference in binding affinities of the involved proteins. In this study, we propose a novel combinatorial greedy algorithm for assembling large oligomeric complexes from information on the approximate position of interaction interfaces of pairs of monomers in the complex. Prior information on complex symmetry is not required but rather the symmetry is inferred during assembly. We implement an efficient geometric score, the transformation match score, that bypasses the model ranking problems of state‐of‐the‐art scoring functions by scoring the similarity between the inferred dimers of the same monomer simultaneously with different binding partners in a (sub)complex with a set of pregenerated docking poses. We compiled a diverse benchmark set of 308 homo and heteromeric complexes containing 6 to 60 monomers. To explore the applicability of the method, we considered 48 sets of parameters and selected those three sets of parameters, for which the algorithm can correctly reconstruct the maximum number, namely 252 complexes (81.8%) in, at least one of the respective three runs. The crossvalidation coverage, that is, the mean fraction of correctly reconstructed benchmark complexes during crossvalidation, was 78.1%, which demonstrates the ability of the presented method to correctly reconstruct topology of a large variety of biological complexes. Proteins 2015; 83:1887–1899. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   
88.
Bacterial leaf symbiosis is an intimate association between bacteria and plants in which endosymbionts are housed within leaf nodules. This phenomenon has been reported in three genera of Rubiaceae (Pavetta, Psychotria, and Sericanthe), but the bacterial partner has only been identified in Psychotria and Pavetta. Here we report the identification of symbiotic bacteria in two leaf nodulating Sericanthe species. Using 16S rRNA data and common housekeeping genetic markers (recA and gyrB) we studied the phylogenetic relationships of bacterial endosymbionts in Rubiaceae. Endosymbionts of leaf nodulating Rubiaceae were found to be closely related and were placed as a monophyletic group within the genus Burkholderia (β-Proteobacteria). The phylogenetic analyses revealed a pattern of strict host specificity and placed the two investigated endosymbionts at two distinct positions in the topology of the tree, suggesting at least two different evolutionary origins. The degree of sequence divergence between the Sericanthe endosymbionts and their relatives was large enough to propose the Sericanthe endosymbionts as new species (‘Candidatus Burkholderia andongensis’ and ‘Candidatus Burkholderia petitii’). In a second part of this study, the pylogenetic relationships among nodulating and non-nodulating Sericanthe species were investigated using sequence data from six chloroplast regions (rps16, trnG, trnL-trnF, petD, petA-psbJ, and atpI-atpH). Overall, genetic variation among the plastid markers was insufficient to enable phylogenetic estimation. However, our results could not rule out the possibility that bacterial leaf symbiosis originated once in a common ancestor of the Sericanthe species.  相似文献   
89.
New records of torrenticolid water mites (Acari: Hydrachnidia, Torrenticolidae) from Nanshih River, Taiwan, are presented. Two new species are described: Torrenticola nanshihensis and Torrenticola taiwanicus; the latter species is compared with Torrenticola ussuriensis (Sokolow, 1940), a poorly known species which is re-described based on a new material from the Russian Far East; Monatractides cf. circuloides (Halík, 1930)is reported for the first time for Taiwan.  相似文献   
90.
It is widely recognized that we are entering an extinction event on a scale approaching the mass extinctions seen in the fossil record. Present-day rates of extinction are estimated to be several orders of magnitude greater than background rates and are projected to increase further if current trends continue. In vertebrates, species traits, such as body size, fecundity, and geographic range, are important predictors of vulnerability. Although plants are the basis for life on Earth, our knowledge of plant extinctions and vulnerabilities is lagging. Here, we disentangle the underlying drivers of extinction risk in plants, focusing on the Cape of South Africa, a global biodiversity hotspot. By comparing Red List data for the British and South African floras, we demonstrate that the taxonomic distribution of extinction risk differs significantly between regions, inconsistent with a simple, trait-based model of extinction. Using a comprehensive phylogenetic tree for the Cape, we reveal a phylogenetic signal in the distribution of plant extinction risks but show that the most threatened species cluster within short branches at the tips of the phylogeny--opposite to trends in mammals. From analyzing the distribution of threatened species across 11 exemplar clades, we suggest that mode of speciation best explains the unusual phylogenetic structure of extinction risks in plants of the Cape. Our results demonstrate that explanations for elevated extinction risk in plants of the Cape flora differ dramatically from those recognized for vertebrates. In the Cape, extinction risk is higher for young and fast-evolving plant lineages and cannot be explained by correlations with simple biological traits. Critically, we find that the most vulnerable plant species are nonetheless marching towards extinction at a more rapid pace but, surprisingly, independently from anthropogenic effects. Our results have important implications for conservation priorities and cast doubts on the utility of current Red List criteria for plants in regions such as the Cape, where speciation has been rapid, if our aim is to maximize the preservation of the tree-of-life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号