首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5015篇
  免费   589篇
  国内免费   10篇
  5614篇
  2021年   63篇
  2018年   67篇
  2017年   46篇
  2016年   79篇
  2015年   118篇
  2014年   141篇
  2013年   250篇
  2012年   235篇
  2011年   219篇
  2010年   149篇
  2009年   150篇
  2008年   183篇
  2007年   183篇
  2006年   176篇
  2005年   172篇
  2004年   166篇
  2003年   160篇
  2002年   124篇
  2001年   148篇
  2000年   154篇
  1999年   133篇
  1998年   78篇
  1997年   74篇
  1996年   63篇
  1995年   67篇
  1994年   65篇
  1993年   61篇
  1992年   95篇
  1991年   113篇
  1990年   110篇
  1989年   84篇
  1988年   94篇
  1987年   95篇
  1986年   63篇
  1985年   73篇
  1984年   85篇
  1983年   63篇
  1982年   65篇
  1981年   71篇
  1980年   52篇
  1979年   83篇
  1978年   70篇
  1977年   60篇
  1976年   60篇
  1975年   57篇
  1974年   60篇
  1973年   67篇
  1972年   45篇
  1971年   47篇
  1969年   42篇
排序方式: 共有5614条查询结果,搜索用时 15 毫秒
971.
972.
973.
The function of protein phosphatases with EF-hand domains (PPEF) in mammals is not known. Large-scale expression profiling experiments suggest that PPEF expression may correlate with stress protective responses, cell survival, growth, proliferation, or neoplastic transformation. Apoptosis signal regulating kinase-1 (ASK1) is a MAP kinase kinase kinase implicated in cancer, cardiovascular and neurodegenerative diseases. ASK1 is activated by oxidative stress and induces pro-apoptotic or inflammatory signalling, largely via sustained activation of MAP kinases p38 and/or JNK. We identify human PPEF2 as a novel interacting partner and a negative regulator of ASK1. In COS-7 or HEK 293A cells treated with H2O2, expression of PPEF2 abrogated sustained activation of p38 and one of the JNK p46 isoforms, and prevented ASK1-dependent caspase-3 cleavage and activation. PPEF2 efficiently suppressed H2O2-induced activation of ASK1. Overexpessed as well as endogenous ASK1 co-immunoprecipitated with PPEF2. PPEF2 was considerably more potent both as a suppressor of ASK1 activation and as its interacting partner as compared to protein phosphatase 5 (PP5), a well-known negative regulator of ASK1. PPEF2 was found to form complexes with endogenous Hsp70 and to a lesser extent Hsp90, which are also known interacting partners of PP5. These data identify, for the first time, a possible downstream signalling partner of a mammalian PPEF phosphatase, and suggest that, despite structural divergence, PPEF and PP5 phosphatases may share common interacting partners and functions.  相似文献   
974.
975.
Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites—a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4–6 ancestral populations. Detailed characterization of mating systems of these clusters revealed emergence of multiple self-compatible (SC) groups from progenitor self-incompatible populations in the northern part of the species range. Emergence of these SC groups was also associated with fixation of deleterious alleles inactivating acylsugar acetylation. The Amotape-Huancabamba Zone—a geographical landmark in the Andes with high endemism and isolated microhabitats—was identified as a major driver of differentiation in the northern species range, whereas large geographical distances contributed to population structure and evolution of a novel SC group in the central and southern parts of the range, where the species was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating population differentiation, and enhance our understanding of the microevolutionary processes that create biological diversity.  相似文献   
976.
977.
Bacterial DNA can be damaged by reactive nitrogen and oxygen intermediates (RNI and ROI) generated by host immunity, as well as by antibiotics that trigger bacterial production of ROI. Thus a pathogen's ability to repair its DNA may be important for persistent infection. A prominent role for nucleotide excision repair (NER) in disease caused by Mycobacterium tuberculosis (Mtb) was suggested by attenuation of uvrB-deficient Mtb in mice. However, it was unknown if Mtb's Uvr proteins could execute NER. Here we report that recombinant UvrA, UvrB, and UvrC from Mtb collectively bound and cleaved plasmid DNA exposed to ultraviolet (UV) irradiation or peroxynitrite. We used the DNA incision assay to test the mechanism of action of compounds identified in a high-throughput screen for their ability to delay recovery of M. smegmatis from UV irradiation. 2-(5-Amino-1,3,4-thiadiazol-2-ylbenzo[f]chromen-3-one) (ATBC) but not several closely related compounds inhibited cleavage of damaged DNA by UvrA, UvrB, and UvrC without intercalating in DNA and impaired recovery of M. smegmatis from UV irradiation. ATBC did not affect bacterial growth in the absence of UV exposure, nor did it exacerbate the growth defect of UV-irradiated mycobacteria that lacked uvrB. Thus, ATBC appears to be a cell-penetrant, selective inhibitor of mycobacterial NER. Chemical inhibitors of NER may facilitate studies of the role of NER in prokaryotic pathobiology.  相似文献   
978.
The plant cell wall is a dynamic and complex structure whose functional integrity is constantly being monitored and maintained during development and interactions with the environment. In response to cell wall damage (CWD), putatively compensatory responses, such as lignin production, are initiated. In this context, lignin deposition could reinforce the cell wall to maintain functional integrity. Lignin is important for the plant's response to environmental stress, for reinforcement during secondary cell wall formation, and for long-distance water transport. Here, we identify two stages and several components of a genetic network that regulate CWD-induced lignin production in Arabidopsis (Arabidopsis thaliana). During the early stage, calcium and diphenyleneiodonium-sensitive reactive oxygen species (ROS) production are required to induce a secondary ROS burst and jasmonic acid (JA) accumulation. During the second stage, ROS derived from the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D and JA-isoleucine generated by JASMONIC ACID RESISTANT1, form a negative feedback loop that can repress each other's production. This feedback loop in turn seems to influence lignin accumulation. Our results characterize a genetic network enabling plants to regulate lignin biosynthesis in response to CWD through dynamic interactions between JA and ROS.  相似文献   
979.
Site-specific GalNAc-type O-glycosylation is emerging as an important co-regulator of proprotein convertase (PC) processing of proteins. PC processing is crucial in regulating many fundamental biological pathways and O-glycans in or immediately adjacent to processing sites may affect recognition and function of PCs. Thus, we previously demonstrated that deficiency in site-specific O-glycosylation in a PC site of the fibroblast growth factor, FGF23, resulted in marked reduction in secretion of active unprocessed FGF23, which cause familial tumoral calcinosis and hyperostosis hyperphosphatemia. GalNAc-type O-glycosylation is found on serine and threonine amino acids and up to 20 distinct polypeptide GalNAc transferases catalyze the first addition of GalNAc to proteins making this step the most complex and differentially regulated steps in protein glycosylation. There is no reliable prediction model for O-glycosylation especially of isolated sites, but serine and to a lesser extent threonine residues are frequently found adjacent to PC processing sites. In the present study we used in vitro enzyme assays and ex vivo cell models to systematically address the boundaries of the region within site-specific O-glycosylation affect PC processing. The results demonstrate that O-glycans within at least ±3 residues of the RXXR furin cleavage site may affect PC processing suggesting that site-specific O-glycosylation is a major co-regulator of PC processing.  相似文献   
980.
Features of the life history of Himantura astra from north-east Australia were examined including its age and growth, reproduction and diet. Centrum edge and marginal increment ratio analyses were used to validate annual band formations with the Gompertz growth function providing the best fit to male (W(D∞) = 722·7 mm, k = 0·104) and female (W(D∞) = 821·8 mm, k = 0·073) disc width (W(D))-at-age data. At 29 years, the maximum age of females was higher than males (18 years). Sizes at 50% sexual maturity (W(D50)) for males and females were 469·3 and 462·3 mm, respectively. Ages at sexual maturity (A(M50)) were reported at 7·32 (males) and 8·67 (females) years. An index of relative importance (I(RI)) revealed carid shrimps (77·9%), brachyurans (12·1%) and stomatopods (4·9%) as the most important prey groups, with prey diversity increasing with W(D) from 0·92 to 1·63 (Shannon-Weiner index). This study provides significant insights into the biology of H. astra and contributes to the ongoing development of fisheries-based risk assessments for this species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号