首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26866篇
  免费   2107篇
  国内免费   970篇
  2023年   261篇
  2022年   522篇
  2021年   1066篇
  2020年   704篇
  2019年   935篇
  2018年   956篇
  2017年   725篇
  2016年   1037篇
  2015年   1449篇
  2014年   1647篇
  2013年   1993篇
  2012年   2178篇
  2011年   2020篇
  2010年   1160篇
  2009年   1051篇
  2008年   1190篇
  2007年   1103篇
  2006年   1015篇
  2005年   893篇
  2004年   792篇
  2003年   684篇
  2002年   597篇
  2001年   454篇
  2000年   473篇
  1999年   414篇
  1998年   250篇
  1997年   233篇
  1996年   243篇
  1995年   227篇
  1994年   200篇
  1993年   163篇
  1992年   245篇
  1991年   258篇
  1990年   233篇
  1989年   178篇
  1988年   189篇
  1987年   194篇
  1986年   133篇
  1985年   159篇
  1984年   133篇
  1983年   116篇
  1982年   90篇
  1981年   94篇
  1979年   116篇
  1978年   97篇
  1977年   77篇
  1976年   73篇
  1975年   86篇
  1974年   81篇
  1973年   83篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Abstract

The crystal structure of the deoxyoctamer d(G-G-Br U-A-BrU-A-C-C) was refined to a resolution of 1.7Å using combined diffractometer and synchrotron data. The analysis was carried out independently in two laboratories using different procedures. Although the final results are identical the comparison of the two approaches highlights potential problems in the refinement of oligonucleotides when only limited data are available.

As part of the analysis the positions of 84 solvent molecules in the asymmetric unit were established. The DNA molecule is highly solvated, particularly the phosphate-sugar backbone and the functional groups of the bases. The major groove contains, in the central BrU-A-BrU-A region, a ribbon of water molecules forming closed pentagons with shared edges. These water molecules are linked to the base O and N atoms and to the solvent chains connecting the O-1 phosphate oxygen atoms on each strand. The minor groove is also extensively hydrated with a continuous network in the central region and other networks at each end. The pattern of hydration is briefly compared with that observed in the crystal structure of a B-dodecamer.  相似文献   
993.
Heat shock factors (HSFs) in plants regulate heat stress response by mediating expression of a set of heat shock protein (HSP) genes. In the present study, we isolated a novel heat shock gene, TaHSF3, encoding a protein of 315 amino acids in wheat. Phylogenetic analysis showed that TaHSF3 belonged to HSF class B2. Subcellular localization analysis indicated that TaHSF3 localized in nuclei. TaHSF3 was highly expressed in wheat spikes and showed intermediate expression levels in roots, stems, and leaves under normal conditions. It was highly upregulated in wheat seedlings by heat and cold and to a lesser extent by drought and NaCl and ABA treatments. Overexpression of TaHSF3 in Arabidopsis enhanced tolerance to extreme temperatures. Frequency of survival of three TaHSF3 transgenic Arabidopsis lines was 75–91 % after heat treatment and 85–95 % after freezing treatment compared to 25 and 10 %, respectively, in wild-type plants (WT). Leaf chlorophyll contents of the transformants were higher (0.52–0.67 mg/g) than WT (0.35 mg/g) after heat treatment, and the relative electrical conductivities of the transformants after freezing treatment were lower (from 17.56 to 18.6 %) than those of WT (37.5 %). The TaHSF3 gene from wheat therefore confers tolerance to extreme temperatures in transgenic Arabidopsis by activating HSPs, such as HSP70.  相似文献   
994.
The function of a member of the actin-depolymerizing factor family from Gossypium barbadense, GbADF1, was investigated. Tobacco (Nicotiana tabacum) lines expressing GbADF1 were produced by Agrobacterium-mediated transformation. Southern and northern blot analyses showed that GbADF1 was successfully incorporated as a single copy into the tobacco genome and stably expressed in three lines of T1 transgenic tobacco plants. Biological changes were detected in these transgenic lines, wherein GbADF1 transgenic seedlings exhibited shorter hypocotyls along with fewer root hairs than those of control plants. Moreover, guard cells of leaves of the transgenic plants were induced to close stomata, while flowering was delayed 5 days in T1 lines compared to those of empty vector transgenic control plants. Segregation of GbADF1 in the T2 generation fits the expected 3:1 ratio corresponding to a single dominant gene. Subsequently, GbADF1 was fused to the green fluorescent protein gene to generate a fusion expression vector. Transient expression analysis indicated that this fusion protein was localized in the nucleus and cytoskeleton of epidermal cells of onion. These results suggest that actin-depolymerizing factor 1 gene from G. barbadense plays an important role in the process of plant cell morphogenesis.  相似文献   
995.
996.
997.
We examined the potential differences in tolerance to hypoxia by two species of apple rootstocks. Stomatal behavior and photosynthesis were compared between Malus sieversii and Malus hupehensis. Plants were hydroponically grown for 15 days in normoxic or hypoxic nutrient solutions. Those of M. sieversii showed much greater sensitivity, with exposure to hypoxia resulting in higher leaf concentrations of abscisic acid (ABA) that prompted stomatal closure. Compared with the control plants of that species, stomatal density was greater in both new and mature leaves under stress conditions. In contrast, stomatal density was significantly decreased in leaves from M. hupehensis, while stomatal length was unaffected. Under stress, the net photosynthetic rate, stomatal conductance and chlorophyll contents were markedly reduced in M. sieversii. The relatively hypoxia‐tolerant genotype M. hupehensis, however, showed only minor changes in net photosynthesis or chlorophyll content, and only a slight decrease in stomatal conductance due to such treatment. Therefore, we conclude that the more tolerant M. hupehensis utilizes a better protective mechanism for retaining higher photosynthetic capacity than does the hypoxia‐sensitive M. sieversii. Moreover, this contrast in tolerance and adaptation to stress is linked to differences in their stomatal behavior, photosynthetic capacity and possibly their patterns of native distribution.  相似文献   
998.
The central role of multisubunit tethering complexes in intracellular trafficking has been established in yeast and mammalian systems. However, little is known about their roles in the stress responses and the early secretory pathway in Arabidopsis. In this study, Maigo2 (MAG2), which is equivalent to the yeast Tip20p and mammalian Rad50‐interacting protein, is found to be required for the responses to salt stress, osmotic stress and abscisic acid in seed germination and vegetative growth, and MAG2‐like (MAG2L) is partially redundant with MAG2 in response to environmental stresses. MAG2 strongly interacts with the central region of ZW10, and both proteins are important as plant endoplasmic reticulum (ER)‐stress regulators. ER morphology and vacuolar protein trafficking are unaffected in the mag2, mag2l and zw10 mutants, and the secretory marker to the apoplast is correctly transported in mag2 plants, which indicate that MAG2 functions as a complex with ZW10, and is potentially involved in Golgi‐to‐ER retrograde trafficking. Therefore, a new role for ER–Golgi membrane trafficking in abiotic‐stress and ER‐stress responses is discovered.  相似文献   
999.

Aims

A commonly accepted challenge when visualising plant roots in X-ray micro Computed Tomography (μCT) images is the similar X-ray attenuation of plant roots and soil phases. Soil moisture content remains a recognised, yet currently uncharacterised source of segmentation error. This work sought to quantify the effect of soil moisture content on the ability to segment roots from soil in μCT images.

Methods

Rice (Oryza sativa) plants grown in contrasting soils (loamy sand and clay loam) were μCT scanned daily for nine days whilst drying from saturation. Root volumes were segmented from μCT images and compared with volumes derived by root washing.

Results

At saturation the overlapping attenuation values of root material, water-filled soil pores and soil organic matter significantly hindered segmentation. However, in dry soil (ca. six days of drying post-saturation) the air-filled pores increased image noise adjacent to roots and impeded accurate visualisation of root material. The root volume was most accurately segmented at field capacity.

Conclusions

Root volumes can be accurately segmented from μCT images of undisturbed soil without compromising the growth requirements of the plant providing soil moisture content is kept at field capacity. We propose all future studies in this area should consider the error associated with scanning at different soil moisture contents.  相似文献   
1000.
Magnesium transporters and their role in Al tolerance in plants   总被引:2,自引:0,他引:2  
Magnesium (Mg) is an essential macronutrient for plant growth, which has diverse biological functions. However, little is known about the transport system of this nutrient in plants. In the genome of plants such as rice and Arabidopsis, there are homologues of bacterial Mg transporters (CorA) and some of them have been functionally characterized, but the physiological role of these transporters are poorly understood. On the other hand, Mg is able to alleviate Al toxicity in a number of plant species, but the mechanisms underlying this alleviation are not well understood. Recently, this alleviation has been associated with a Mg transporter in rice. In this paper, we present our opinions on Mg transporters, which are required for uptake, translocation, distribution and storage in plants. Possible mechanisms for Mg-mediated alleviation of Al toxicity are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号