首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10845篇
  免费   990篇
  国内免费   5篇
  11840篇
  2023年   92篇
  2022年   206篇
  2021年   375篇
  2020年   211篇
  2019年   273篇
  2018年   301篇
  2017年   239篇
  2016年   403篇
  2015年   717篇
  2014年   737篇
  2013年   750篇
  2012年   1044篇
  2011年   956篇
  2010年   524篇
  2009年   395篇
  2008年   564篇
  2007年   591篇
  2006年   471篇
  2005年   417篇
  2004年   420篇
  2003年   332篇
  2002年   312篇
  2001年   72篇
  2000年   63篇
  1999年   59篇
  1998年   84篇
  1997年   47篇
  1996年   39篇
  1995年   32篇
  1994年   32篇
  1993年   39篇
  1992年   56篇
  1991年   44篇
  1990年   48篇
  1989年   40篇
  1988年   37篇
  1987年   33篇
  1986年   32篇
  1985年   45篇
  1984年   42篇
  1983年   35篇
  1982年   35篇
  1981年   38篇
  1980年   39篇
  1979年   29篇
  1978年   36篇
  1977年   34篇
  1976年   44篇
  1975年   31篇
  1974年   37篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Cytotoxin fractions were isolated from Campylobacter jejuni 81116 and semi-purified by size-exclusion liquid chromatography. The fraction showing the strongest toxicity was injected into mice to produce antiserum. The antiserum was used to screen a C. jejuni 81116 cosmid library. Nine genes were identified in overlapping cosmid inserts that induced reactivity with the antiserum. One of these genes showed high similarity to a periplasmic protein of unknown function and its isogenic mutant showed decreased toxicity compared to the C. jejuni 81116 wild type. This gene contains a Gram-negative bacterial RTX toxin-activating protein C signature, which suggests it may play a role in C. jejuni 81116 cytotoxin activation.  相似文献   
72.
Recombinant proteins are essential products of today's industrial biotechnology. In this study we address two crucial factors in recombinant protein production: (i) product accessibility and (ii) product recovery. Escherichia coli, one of the most frequently used hosts for recombinant protein expression, does not inherently secrete proteins into the extracellular environment. The major drawback of this expression system is, therefore, to be found in the intracellular protein accumulation and hampered product accessibility. We have constructed a set of expression vectors in order to facilitate extracellular protein production and purification. The maltose binding protein from E. coli is used as fusion partner for several proteins of interest allowing an export to the bacteria's periplasm via both the Sec and the Tat pathway. Upon coexpression of a modified Cloacin DF13 bacteriocin release protein, the hybrid proteins are released into the culture medium. This essentially applies to a distinguished reporter molecule, the green fluorescent protein, for which an extracellular production was not reported so far. The sequestered proteins can be purified to approximate homogeneity by a simple, rapid and cheap procedure which utilizes the affinity of the maltose binding protein to α-1,4-glucans.  相似文献   
73.
Ecosystems - Stream ecosystem metabolism contributes to global carbon cycling, yet predicting metabolism across ecosystems remains elusive. Even within stream segments, spatial variation in...  相似文献   
74.
During protein synthesis, elongation factor-Tu (EF-Tu) bound to GTP chaperones the entry of aminoacyl-tRNA (aa-tRNA) into actively translating ribosomes. In so doing, EF-Tu increases the rate and fidelity of the translation mechanism. Recent evidence suggests that EF-Ts, the guanosine nucleotide exchange factor for EF-Tu, directly accelerates both the formation and dissociation of the EF-Tu-GTP-Phe-tRNAPhe ternary complex (Burnett, B. J., Altman, R. B., Ferrao, R., Alejo, J. L., Kaur, N., Kanji, J., and Blanchard, S. C. (2013) J. Biol. Chem. 288, 13917–13928). A central feature of this model is the existence of a quaternary complex of EF-Tu/Ts·GTP·aa-tRNAaa. Here, through comparative investigations of phenylalanyl, methionyl, and arginyl ternary complexes, and the development of a strategy to monitor their formation and decay using fluorescence resonance energy transfer, we reveal the generality of this newly described EF-Ts function and the first direct evidence of the transient quaternary complex species. These findings suggest that EF-Ts may regulate ternary complex abundance in the cell through mechanisms that are distinct from its guanosine nucleotide exchange factor functions.  相似文献   
75.
The chemokines are a family of small chemoattractant proteins that have a range of functions, including activation and promotion of vectorial migration of leukocytes. Regulation on activation, normal T cell expressed and secreted (RANTES; CCL5), a member of the CC-chemokine subfamily, has been implicated in a variety of immune responses. In addition to the interaction of CC-chemokines with their cognate cell-surface receptors, it is known that they also bind to glycosaminoglycans (GAGs), including heparan sulfate. This potential for binding to GAG components of proteoglycans on the cell surface or within the extracellular matrix might allow formation of the stable chemokine concentration gradients necessary for leukocyte chemotaxis. In this study, we created a panel of mutant RANTES molecules containing neutral amino acid substitutions within putative, basic GAG-binding domains. Despite showing reduced binding to GAGs, it was found that each mutant containing a single amino acid substitution induced a similar leukocyte chemotactic response within a concentration gradient generated by free solute diffusion. However, we found that the mutant K45A had a significantly reduced potential to stimulate chemotaxis across a monolayer of microvascular endothelial cells. Significantly, this mutant bound to the CCR5 receptor and showed a potential to mobilize Ca(2+) with an affinity similar to the wild-type protein. These results show that the interaction between RANTES and GAGs is not necessary for specific receptor engagement, signal transduction, or leukocyte migration. However, this interaction is required for the induction of efficient chemotaxis through the extracellular matrix between confluent endothelial cells.  相似文献   
76.
Heterotopic ossification (HO) is the formation of bone outside of the skeleton which forms following major trauma, burn injuries, and orthopaedic surgical procedures. The majority of animal models used to study HO rely on the application of exogenous substances, such as bone morphogenetic protein (BMP), exogenous cell constructs, or genetic mutations in BMP signaling. While these models are useful they do not accurately reproduce the inflammatory states that cause the majority of cases of HO. Here we describe a burn/tenotomy model in mice that reliably produces focused HO. This protocol involves creating a 30% total body surface area partial thickness contact burn on the dorsal skin as well as division of the Achilles tendon at its midpoint. Relying solely on traumatic injury to induce HO at a predictable location allows for time-course study of endochondral heterotopic bone formation from intrinsic physiologic processes and environment only. This method could prove instrumental in understanding the inflammatory and osteogenic pathways involved in trauma-induced HO. Furthermore, because HO develops in a predictable location and time-course in this model, it allows for research to improve early imaging strategies and treatment modalities to prevent HO formation.  相似文献   
77.
Odors are initially represented in the olfactory bulb (OB) by patterns of sensory input across the array of glomeruli. Although activated glomeruli are often widely distributed, glomeruli responding to stimuli sharing molecular features tend to be loosely clustered and thus establish a fractured chemotopic map. Neuronal circuits in the OB transform glomerular patterns of sensory input into spatiotemporal patterns of output activity and thereby extract information about a stimulus. It is, however, unknown whether the chemotopic spatial organization of glomerular inputs is maintained during these computations. To explore this issue, we measured spatiotemporal patterns of odor-evoked activity across thousands of individual neurons in the zebrafish OB by temporally deconvolved two-photon Ca2+ imaging. Mitral cells and interneurons were distinguished by transgenic markers and exhibited different response selectivities. Shortly after response onset, activity patterns exhibited foci of activity associated with certain chemical features throughout all layers. During the subsequent few hundred milliseconds, however, MC activity was locally sparsened within the initial foci in an odor-specific manner. As a consequence, chemotopic maps disappeared and activity patterns became more informative about precise odor identity. Hence, chemotopic maps of glomerular input activity are initially transmitted to OB outputs, but not maintained during pattern processing. Nevertheless, transient chemotopic maps may support neuronal computations by establishing important synaptic interactions within the circuit. These results provide insights into the functional topology of neural activity patterns and its potential role in circuit function.  相似文献   
78.
79.
80.
Evolutionary Ecology - Understanding how environmental conditions affect trait expression in animals is important for estimating the evolutionary potential of that trait. Two different mechanisms...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号