首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11512篇
  免费   1127篇
  国内免费   5篇
  2023年   94篇
  2022年   212篇
  2021年   385篇
  2020年   216篇
  2019年   281篇
  2018年   307篇
  2017年   256篇
  2016年   429篇
  2015年   745篇
  2014年   770篇
  2013年   781篇
  2012年   1103篇
  2011年   1014篇
  2010年   549篇
  2009年   424篇
  2008年   590篇
  2007年   634篇
  2006年   503篇
  2005年   447篇
  2004年   466篇
  2003年   348篇
  2002年   335篇
  2001年   81篇
  2000年   87篇
  1999年   83篇
  1998年   87篇
  1997年   49篇
  1996年   51篇
  1995年   35篇
  1994年   52篇
  1993年   59篇
  1992年   70篇
  1991年   70篇
  1990年   63篇
  1989年   48篇
  1988年   42篇
  1987年   45篇
  1986年   35篇
  1985年   53篇
  1984年   50篇
  1983年   37篇
  1982年   40篇
  1981年   38篇
  1980年   37篇
  1979年   38篇
  1978年   39篇
  1976年   41篇
  1975年   28篇
  1974年   41篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 39 毫秒
981.
The idea that oxidative stress could be a major force governing evolutionary trade‐offs has recently been challenged by experimental approaches in laboratory conditions, triggering extensive debates centered on theoretical and methodological issues. Here, we revisited the link between oxidative stress and reproduction by measuring multiple antioxidant and oxidative damages in wild‐caught females of two sibling weevil species (Curculio elephas, C. glandium). The strength of our study arised from (1) studied species that were sympatric and exploited similar resource, but displayed contrasting reproductive strategies and (2) individuals were sampled throughout adult life so as to relate oxidative status to breeding effort. We found that the short‐lived C. elephas sacrifices red‐ox homeostasis for immediate reproduction upon emergence as characterized by low antioxidant defenses and elevated oxidative damage. Comparatively, C. glandium massively invests in antioxidant and maintains low oxidative damage, which may contribute to their extended prereproductive period. Intriguingly, we also reveal, for the first time in a field study, an unexpected reactivation of antioxidant defenses with the onset of reproduction. Our results thus support the existence of a strong, but complex relationship between oxidative stress and life‐history evolution and highlight the need for a finer‐scale picture of antioxidant strategies.  相似文献   
982.
Small nucleolar RNAs (snoRNAs) guide nucleotide modifications of cellular RNAs in the nucleus. We previously showed that box C/D snoRNAs from the Rpl13a locus are unexpected mediators of physiologic oxidative stress, independent of their predicted ribosomal RNA modifications. Here we demonstrate that oxidative stress induced by doxorubicin causes rapid cytoplasmic accumulation of the Rpl13a snoRNAs through a mechanism that requires superoxide and a nuclear splice variant of NADPH oxidase. RNA-sequencing analysis reveals that box C/D snoRNAs as a class are present in the cytoplasm, where their levels are dynamically regulated by NADPH oxidase. These findings suggest that snoRNAs may orchestrate the response to environmental stress through molecular interactions outside of the nucleus.  相似文献   
983.
984.
Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi.  相似文献   
985.
Misfolded proteins of the secretory pathway are extracted from the endoplasmic reticulum (ER), polyubiquitylated by a protein complex termed the Hmg-CoA reductase degradation ligase (HRD-ligase), and degraded by cytosolic 26S proteasomes. This process is termed ER-associated protein degradation (ERAD). We previously showed that the membrane protein Der1, which is a subunit of the HRD-ligase, is involved in the export of aberrant polypeptides from the ER. Unexpectedly, we also uncovered a close spatial proximity of Der1 and the substrate receptor Hrd3 in the ER lumen. We report here on a mutant Hrd3KR that is selectively defective for ERAD of soluble proteins. Hrd3KR displays subtle structural changes that affect its positioning toward Der1. Furthermore, increased quantities of the ER-resident Hsp70-type chaperone Kar2 and the Hsp40-type cochaperone Scj1 bind to Hrd3KR. Of note, deletion of SCJ1 impairs ERAD of model substrates and causes the accumulation of client proteins at Hrd3. Our data imply a function of Scj1 in the removal of malfolded proteins from the receptor Hrd3, which facilitates their delivery to downstream-acting components like Der1.  相似文献   
986.
The dynamic global vegetation model (DGVM) MC2 was run over the conterminous USA at 30 arc sec (~800 m) to simulate the impacts of nine climate futures generated by 3GCMs (CSIRO, MIROC and CGCM3) using 3 emission scenarios (A2, A1B and B1) in the context of the LandCarbon national carbon sequestration assessment. It first simulated potential vegetation dynamics from coast to coast assuming no human impacts and naturally occurring wildfires. A moderate effect of increased atmospheric CO2 on water use efficiency and growth enhanced carbon sequestration but did not greatly influence woody encroachment. The wildfires maintained prairie‐forest ecotones in the Great Plains. With simulated fire suppression, the number and impacts of wildfires was reduced as only catastrophic fires were allowed to escape. This greatly increased the expansion of forests and woodlands across the western USA and some of the ecotones disappeared. However, when fires did occur, their impacts (both extent and biomass consumed) were very large. We also evaluated the relative influence of human land use including forest and crop harvest by running the DGVM with land use (and fire suppression) and simple land management rules. From 2041 through 2060, carbon stocks (live biomass, soil and dead biomass) of US terrestrial ecosystems varied between 155 and 162 Pg C across the three emission scenarios when potential natural vegetation was simulated. With land use, periodic harvest of croplands and timberlands as well as the prevention of woody expansion across the West reduced carbon stocks to a range of 122–126 Pg C, while effective fire suppression reduced fire emissions by about 50%. Despite the simplicity of our approach, the differences between the size of the carbon stocks confirm other reports of the importance of land use on the carbon cycle over climate change.  相似文献   
987.
Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well‐documented, there is a paucity of studies on climate‐mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human‐dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20‐year period using data from the New York State Breeding Atlases collected during 1980–1985 and 2000–2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change, whereas those changes are likely to be greater in contiguous and unfragmented habitats.  相似文献   
988.
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号