首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11474篇
  免费   1126篇
  国内免费   5篇
  2023年   81篇
  2022年   189篇
  2021年   385篇
  2020年   216篇
  2019年   281篇
  2018年   307篇
  2017年   256篇
  2016年   429篇
  2015年   745篇
  2014年   770篇
  2013年   781篇
  2012年   1103篇
  2011年   1014篇
  2010年   549篇
  2009年   424篇
  2008年   590篇
  2007年   634篇
  2006年   503篇
  2005年   447篇
  2004年   466篇
  2003年   348篇
  2002年   335篇
  2001年   81篇
  2000年   87篇
  1999年   83篇
  1998年   87篇
  1997年   49篇
  1996年   51篇
  1995年   35篇
  1994年   52篇
  1993年   59篇
  1992年   70篇
  1991年   70篇
  1990年   63篇
  1989年   48篇
  1988年   42篇
  1987年   45篇
  1986年   35篇
  1985年   53篇
  1984年   50篇
  1983年   37篇
  1982年   40篇
  1981年   38篇
  1980年   37篇
  1979年   38篇
  1978年   39篇
  1976年   41篇
  1975年   28篇
  1974年   41篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
951.
952.
953.
The proprotein convertases (PCs) furin, PC5, PACE4, and PC7 cleave secretory proteins after basic residues, including the HIV envelope glycoprotein (gp160) and Vpr. We evaluated the abundance of PC mRNAs in postmortem brains of individuals exhibiting HIV-associated neurocognitive disorder (HAND), likely driven by neuroinflammation and neurotoxic HIV proteins (e.g., envelope and Vpr). Concomitant with increased inflammation-related gene expression (interleukin-1β [IL-1β]), the mRNA levels of the above PCs are significantly increased, together with those of the proteinase-activated receptor 1 (PAR1), an inflammation-associated receptor that is cleaved by thrombin at ProArg41↓ (where the down arrow indicates the cleavage location), and potentially by PCs at Arg41XXXXArg46↓. The latter motif in PAR1, but not its R46A mutant, drives its interactions with PCs. Indeed, PAR1 upregulation leads to the inhibition of membrane-bound furin, PC5B, and PC7 and inhibits gp160 processing and HIV infectivity. Additionally, a proximity ligation assay revealed that furin and PC7 interact with PAR1. Reciprocally, increased furin expression reduces the plasma membrane abundance of PAR1 by trapping it in the trans-Golgi network. Furthermore, soluble PC5A/PACE4 can target/disarm cell surface PAR1 through cleavage at Arg46↓. PACE4/PC5A decreased calcium mobilization induced by thrombin stimulation. Our data reveal a new PC-PAR1-interaction pathway, which offsets the effects of HIV-induced neuroinflammation, viral infection, and potentially the development of HAND.  相似文献   
954.
955.
956.
Members of the genus Cryptosporidium are waterborne protozoa of great health concern. Many studies have attempted to find appropriate surrogates for assessing Cryptosporidium filtration removal in porous media. In this study, we evaluated the filtration of Cryptosporidium parvum in granular limestone medium by the use of biotin- and glycoprotein-coated carboxylated polystyrene microspheres (CPMs) as surrogates. Column experiments were carried out with core material taken from a managed aquifer recharge site in Adelaide, Australia. For the experiments with injection of a single type of particle, we observed the total removal of the oocysts and glycoprotein-coated CPMs, a 4.6- to 6.3-log10 reduction of biotin-coated CPMs, and a 2.6-log10 reduction of unmodified CPMs. When two different types of particles were simultaneously injected, glycoprotein-coated CPMs showed a 5.3-log10 reduction, while the uncoated CPMs displayed a 3.7-log10 reduction, probably due to particle-particle interactions. Our results confirm that glycoprotein-coated CPMs are the most accurate surrogates for C. parvum; biotin-coated CPMs are slightly more conservative, while unmodified CPMs are markedly overly conservative for predicting C. parvum removal in granular limestone medium. The total removal of C. parvum observed in our study suggests that granular limestone medium is very effective for the filtration removal of C. parvum and could potentially be used for the pretreatment of drinking water and aquifer storage recovery of recycled water.  相似文献   
957.
Monoterpenes are liquid hydrocarbons with applications ranging from flavor and fragrance to replacement jet fuel. Their toxicity, however, presents a major challenge for microbial synthesis. Here we evolved limonene-tolerant Saccharomyces cerevisiae strains and sequenced six strains across the 200-generation evolutionary time course. Mutations were found in the tricalbin proteins Tcb2p and Tcb3p. Genomic reconstruction in the parent strain showed that truncation of a single protein (tTcb3p1-989), but not its complete deletion, was sufficient to recover the evolved phenotype improving limonene fitness 9-fold. tTcb3p1-989 increased tolerance toward two other monoterpenes (β-pinene and myrcene) 11- and 8-fold, respectively, and tolerance toward the biojet fuel blend AMJ-700t (10% cymene, 50% limonene, 40% farnesene) 4-fold. tTcb3p1-989 is the first example of successful engineering of phase tolerance and creates opportunities for production of the highly toxic C10 alkenes in yeast.  相似文献   
958.
959.
n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号