首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10341篇
  免费   952篇
  国内免费   5篇
  11298篇
  2023年   89篇
  2022年   203篇
  2021年   368篇
  2020年   208篇
  2019年   267篇
  2018年   291篇
  2017年   233篇
  2016年   397篇
  2015年   706篇
  2014年   718篇
  2013年   731篇
  2012年   1026篇
  2011年   940篇
  2010年   513篇
  2009年   381篇
  2008年   542篇
  2007年   573篇
  2006年   443篇
  2005年   399篇
  2004年   397篇
  2003年   308篇
  2002年   292篇
  2001年   52篇
  2000年   44篇
  1999年   50篇
  1998年   76篇
  1997年   34篇
  1996年   39篇
  1995年   26篇
  1994年   29篇
  1993年   35篇
  1992年   43篇
  1991年   36篇
  1990年   39篇
  1989年   32篇
  1988年   26篇
  1987年   29篇
  1985年   43篇
  1984年   34篇
  1983年   34篇
  1982年   31篇
  1981年   31篇
  1980年   32篇
  1979年   26篇
  1978年   32篇
  1977年   25篇
  1976年   34篇
  1975年   24篇
  1974年   37篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Rat liver ATP citrate lyase was inactivated by 2, 3-butanedione and phenylglyoxal. Phenylglyoxal caused the most rapid and complete inactivation of enzyme activity in 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid buffer, pH 8. Inactivation by both butanedione and phenylglyoxal was concentration-dependent and followed pseudo- first-order kinetics. Phenylglyoxal also decreased autophosphorylation (catalytic phosphate) of ATP citrate lyase. Inactivation by phenylglyoxal and butanedione was due to the modification of enzyme arginine residues: the modified enzyme failed to bind to CoA-agarose. The V declined as a function of inactivation, but the Km values were unaltered. The substrates, CoASH and CoASH plus citrate, protected the enzyme significantly against inactivation, but ATP provided little protection. Inactivation with excess reagent modified about eight arginine residues per monomer of enzyme. Citrate, CoASH and ATP protected two to three arginine residues from modification by phenylglyoxal. Analysis of the data by statistical methods suggested that the inactivation was due to modification of one essential arginine residue per monomer of lyase, which was modified 1.5 times more rapidly than were the other arginine residues. Our results suggest that this essential arginine residue is at the CoASH binding site.  相似文献   
102.
Levels of the cyclic nucleotides, cAMP and cGMP, were determined in four species of pennate diatoms; changes in their levels and ratios were monitored in silicon-starved and light-dark synchronized cultures of Cylindrotheca fusiformis. Content of both cAMP and cGMP changed during the cell cycles: when silicate was added to starved cultures, cAMP, cGMP and DNA levels rose rapidly; cAMP and cGMP declined before DNA synthesis was complete and continued to fall during the events leading to cell separation. In unstarved synchronies, net synthesis of DNA continued until cell separation; 1 h before cell separation cAMP levels fell while those of cGMP rose. The results support the proposal that cAMP and cGMP may play a part in the process of cell division in the diatom, possibly involving silicon.  相似文献   
103.
R Schlegel  T L Benjamin 《Cell》1978,14(3):587-599
Hr-t mutants of polyoma virus are restricted in their growth properties (host range) and defective in cell transformation and tumor induction. The present study indicates that these mutants have lost the ability to induce morphological transformation, but have retained a mitogenic function. Thus an early and dramatic difference between wild-type virus and hr-t mutant-infected cultures of rat fibroblasts is the morphological change in individual cells observed by light, fluorescence and scanning electron microscopy. Viruses containing an intact hr-t function (wild-type virus and ts-a mutants) induce a transformed phenotype consisting of stellate cell shape, loss of defined cytoplasmic actin architecture, cellular "underlapping," and increased nuclear and nucleolar sizes. These prominent alterations constitute an abortive transformation, peaking 24-48 hr post-infection, and subsequently resolving in most or all of the cells. In contrast, cells infected with hr-t mutants do not develop the above structural changes, but rather retain their preinfection appearance. Both wild-type virus and hr-t mutants induce cellular DNA synthesis in confluent monolayers of rat cells beginning 12-14 hr post-infection. Flow microfluorometric (FMF) analysis confirms the viral mediated transit of cells from the G1 to the S and G2 phases of the cell cycle, as well as an increase in the proportion of cells with an 8N (octaploid) DNA content. Approximately 50% of the clones isolated from wild-type-infected cultures are polyploid. Stable transformants are found among these polyploid clones, but the majority of the latter resemble the parental cells in their morphology and growth properties. Polyploid clones are derived from hr-t mutant-infected cultures at a much lower frequency, similar to that of mock-infected cultures. Data obtained by sequential labeling of infected cultures with 3 H-thymidine and 5-bromo-deoxyuridine, together with cell number quantitation, indicate that hr-t mutants promote only a single round of cell division, while the wild-type virus and ts-a mutants promote multiple rounds. Loss of the hr-t function in polyoma virus therefore reveals a residual viral mitogenic activity, but prevents the virus from effecting morphological transformation of cells with concomitant loss of defined actin cables, polyploidization and multiple cycles of cell division in confluent cultures.  相似文献   
104.
Detailed restriction and nucleotide sequence analysis of the Pseudomonas putida TOL plasmid pDK1 xylE gene revealed significant homology with isofunctional xylE (81.5%) and nahH (78.0%) genes from the TOL pWW0 and NAH7 plasmids. The highest degrees of nucleotide and apparent amino acid conservation (82.2 and 86.4%, respectively) among all three genes were found to exist within a region comprising 264 nucleotides encoding the C terminus. A comparison of localized regions revealed significantly greater homology between xylEpWW0 and xylEpDK1 within the C-terminal region, whereas xylEpWW0 and nahH showed greater similarity at the N terminus. The possibility that xylEpWW0 may represent a genetic hybrid of xylEpDK1 and nahH is discussed.  相似文献   
105.
Rat androgen-binding protein (rABP), human testosterone-binding globulin (hTeBG) and rabbit (rb) TeBG are heterodimeric proteins. The source of the heterogeneity arises from the differential glycosylation of a common protein core. This glycosylation results in a heavy subunit (more glycosylation) and a light subunit (less glycosylation). Glycosylation is one factor responsible for multiple charged species seen when rABP, hTeBG, and rbTeBG are analyzed by two-dimensional gel electrophoresis. Enzymatic digestion with the endoglycosidase, peptide: N-glycosidase F indicated that all three proteins have asparagine (Asn)-linked oligosaccharides as their major glycan substituent. Treatment with exoglycosidases provided evidence for terminal sialic acid, galactose and mannose and N-acetylglucosamine residues. About 16–22% of the mass of the heavy subunit and about 8–14% of the mass of the light subunit is contributed by carbohydrate.

Serial lectin chromatography indicated that rABP is glycosylated differently from hTeBG and rbTeBG. About 40% of the rABP contains tri and tetraantennary complex oligosaccharides, while only about 20% of the hTeBG and TeBG from pregnant rabbits contains these types of glycans. About 9% of the TeBG from male rabbits bears these types of oligosaccharides. All of the biantennary complex oligosaccharides on rABP are fucosylated on the chitobiose core, but only 8% of those on hTeBG and none of those on rbTeBG are fucosylated in this manner. All three proteins are glycosylated at more than one site. The data indicate that the proteins may have more than one type of oligosaccharide on them. It is likely that differences in glycosylation are responsible for different physiological roles of the proteins.  相似文献   

106.
A high proportion of spontaneous mutations at the heterozygous thymidine kinase (TK) locus in a human B-lymphoblast cell line involved loss of the entire active allele. Loss of heterozygosity often extended to other loci on chromosome 17q. The authors have developed a system for analysing the role of homologous recombination and gene conversion in such events. A heteroallelic (TK-/-) cell line containing single + 1 frameshifts in exons 4 and 7 was generated by repeated exposures to ICR-191. Revertant mutations to TK+/- were selected and analysed for the presence or absence or each frameshift as well as changes in linked polymorphic markers on 17q. The molecular changes associated with reversion to TK+ can thus be analysed. Preliminary results indicate that homologous recombination can be detected with this system, though it occurs at low frequency (less than 10(-7]. The authors believe this represents the first quantitative assay for measuring recombination between alleles of a specific intact gene in human cells. It should prove useful in evaluating the potency of various classes of mutagens in inducing recombinational and gene conversion events.  相似文献   
107.
108.
To determine the maximally tolerated dose of a ricin A chain-conjugated antimelanoma antibody (XomaZyme-Mel), 20 patients with metastatic melanoma were treated with escalating doses of the murine immunotoxin given as single intravenous infusion over 30 minutes. The starting dose was 0.6 mg/kg and was escalated in five groups to a maximum of 1.6 mg/kg. The maximally tolerated dose was 1.25 mg/kg as three of six patients treated at 1.6 mg/kg developed unacceptable toxicity. The dose-limiting toxicity consisted of profound fatigue, myalgias, and arthralgias. These occurred within 4 days and resolved in 7 to 10 days. Other non-dose-limiting toxicities encountered consisted of hypoalbuminemia, weight gain, peripheral edema, mild hypotension, and flu-like syndrome; the severity of these was also dose related. In addition, two allergic reactions occurred, one severe. There was one durable complete response of 12+ months' duration and one brief mixed response lasting 3 months. We conclude that the maximum tolerated single dose of XomaZyme-Mel is 1.25 mg/kg. Phase I studies evaluating 1.25 mg/kg given in multiple doses at 2- to 4-week intervals and phase II studies to determine the response rate of a single 1.25 mg/kg dose are warranted.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号