首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10265篇
  免费   944篇
  国内免费   5篇
  11214篇
  2023年   89篇
  2022年   203篇
  2021年   368篇
  2020年   207篇
  2019年   267篇
  2018年   291篇
  2017年   232篇
  2016年   397篇
  2015年   705篇
  2014年   718篇
  2013年   726篇
  2012年   1021篇
  2011年   933篇
  2010年   511篇
  2009年   380篇
  2008年   539篇
  2007年   569篇
  2006年   441篇
  2005年   397篇
  2004年   394篇
  2003年   305篇
  2002年   292篇
  2001年   52篇
  2000年   40篇
  1999年   47篇
  1998年   73篇
  1997年   33篇
  1996年   36篇
  1995年   26篇
  1994年   29篇
  1993年   34篇
  1992年   42篇
  1991年   36篇
  1990年   37篇
  1989年   29篇
  1988年   26篇
  1987年   26篇
  1986年   21篇
  1985年   41篇
  1984年   34篇
  1983年   34篇
  1982年   31篇
  1981年   31篇
  1980年   32篇
  1979年   25篇
  1978年   32篇
  1977年   25篇
  1976年   34篇
  1975年   24篇
  1974年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Many publications make use of opportunistic data, such as citizen science observation data, to infer large‐scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS‐telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat‐use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat‐use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat‐use studies.  相似文献   
992.
Dahl J  Chen HI  George M  Benjamin TL 《Journal of virology》2007,81(18):10064-10071
Minichromosomes of wild-type polyomavirus were previously shown to be highly acetylated on histones H3 and H4 compared either to bulk cell chromatin or to viral chromatin of nontransforming hr-t mutants, which are defective in both the small T and middle T antigens. A series of site-directed virus mutants have been used along with antibodies to sites of histone modifications to further investigate the state of viral chromatin and its dependence on the T antigens. Small T but not middle T was important in hyperacetylation at major sites in H3 and H4. Mutants blocked in middle T signaling pathways but encoding normal small T showed a hyperacetylated pattern similar to that of wild-type virus. The hyperacetylation defect of hr-t mutant NG59 was partially complemented by growth of the mutant in cells expressing wild-type small T. In contrast to the hypoacetylated state of NG59, NG59 minichromosomes were hypermethylated at specific lysines in H3 and also showed a higher level of phosphorylation at H3ser10, a modification associated with the late G(2) and M phases of the cell cycle. Comparisons of virus growth kinetics and cell cycle progression in wild-type- and NG59-infected cells showed a correlation between the phase of the cell cycle at which virus assembly occurred and histone modifications in the progeny virus. Replication and assembly of wild-type virus were completed largely during S phase. Growth of NG59 was delayed by about 12 h with assembly occurring predominantly in G(2). These results suggest that small T affects modifications of viral chromatin by altering the temporal coordination of virus growth and the cell cycle.  相似文献   
993.
Decreased antigenicity of cancer cells is a major problem in tumor immunology. This is often acquired by an expression defect in the TAP. However, it has been reported that certain murine Ags appear on the target cell surface upon impairment of TAP expression. In this study, we identified a human CTL epitope belonging to this Ag category. This epitope is derived from preprocalcitonin (ppCT) signal peptide and is generated within the endoplasmic reticulum by signal peptidase and signal peptide peptidase. Lung cancer cells bearing this antigenic peptide displayed low levels of TAP, but restoration of their expression by IFN-γ treatment or TAP1 and TAP2 gene transfer abrogated ppCT Ag presentation. In contrast, TAP upregulation in the same tumor cells increased their recognition by proteasome/TAP-dependent peptide-specific CTLs. Thus, to our knowledge, ppCT(16-25) is the first human tumor epitope whose surface expression requires loss or downregulation of TAP. Lung tumors frequently display low levels of TAP molecules and might thus be ignored by the immune system. Our results suggest that emerging signal peptidase-generated peptides represent alternative T cell targets, which permit CTLs to destroy TAP-impaired tumors and thus overcome tumor escape from CD8(+) T cell immunity.  相似文献   
994.
Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples.The nucleosome, the basic unit of chromatin, consists of 147 base pairs of DNA wrapped around histone proteins (H2A, H2B, H3, and H4). Histones play vital roles in chromatin, interacting with many signaling proteins and chromatin-structural proteins through various post-translational modifications (PTMs)1 (13). There are numerous PTMs on histones, including methylation (mono - me1, di - me2, tri - me3), acetylation (ac), phosphorylation (ph), ubiquitination, and SUMOylation (4). Histone PTMs can affect chromatin function, and therefore influence processes such as gene accessibility, DNA repair and chromosome condensation. Moreover, histone PTMs cross-talk in a synergistic manner to fine-tune gene expression (5). Therefore, quantification of histone PTMs has become a high priority to investigate cell regulation and epigenetics (6).Traditionally, antibody-based methods (e.g. Western blot) have been used to analyze histone modifications (7), which have multiple disadvantages. First, antibodies are not available for every new PTM discovered. Second, PTMs on neighboring amino acids (e.g. H3K9me1–3 and H3S10ph) may prevent antibody binding, a phenomenon called epitope occlusion. Third, the quantification of PTMs via antibody-based methods is not sensitive to small differences (e.g. <twofold). Mass spectrometry (MS) has emerged as a sensitive and efficient technique to detect known and novel PTMs (8). The high mass accuracy and the high speed of modern mass spectrometers allow for sensitive, confident, and accurate peptide quantification when coupled with nanoflow liquid chromatography (nanoLC).NanoLC-MS/MS analysis of protein digests (i.e. bottom-up MS) is nowadays a mature and widely applied technology. Data-dependent acquisition is the most commonly adopted MS acquisition method to identify peptides via bottom-up MS (912), generating MS1 and MS2 spectra. Nevertheless, histone proteins are particularly challenging to analyze by using the generalized bottom-up workflow. As histones are rich with lysines and arginines, tryptic digest of histones generates short peptides that are difficult to be retained on C18 columns. To improve histone peptide retention, the unmodified and mono-methylated lysines and peptide N terminus can be selectively chemically propionylated (1316), preventing tryptic digest after lysine to generate longer peptides. Moreover, peptide identification through traditional database searches leads to a large number of false positives, as allowing several dynamic modifications (e.g. me1/me2/me3, ac, ph) dramatically increases the number of molecular candidates and thus the possibility to achieve a false hit (12). Therefore, software tools that quantify histone peptides require additional data to correctly map a given peptide, such as previous knowledge of peptide retention time.Quantification of histone peptides is particularly challenging because of presence of isobaric peptides, near isobaric PTMs such as tri-methylation (42.047 Da) and acetylation (42.011 Da), and low abundant species. Previous knowledge about relative peptide retention time (RT) enables differentiation between species close in mass and therefore selection of the correct peak for integration of the area of the chromatographic peak (i.e. area under curve or AUC). However, determination of peptide RT might be difficult because of their low abundance though acid extraction was performed to purify histones. This problem can be solved by using isotopically labeled synthetic histone peptides (17), or data independent approaches (18). When using relative retention time information to assign peak identities, reproducible nanoLC is crucial, especially because some isobaric peptides co-elute. In this case, the MS acquisition method must perform targeted MS2 for the co-eluting isobaric peptides at the specific time that they elute. These species can be discriminated and quantified based on the intensity of fragment ions unique to each species. For instance, the peptides KacSTGGKAPR (H3K9ac) and KSTGGKacAPR (H3K14ac) have the same mass and overlap at the nanoLC elution (the full protein sequence of human canonical histone H3 and H4 are shown in Fig. 1A). Thus, the co-eluting isobaric peptides could not be quantified separately based on the MS1 signal, but the unique fragment ions present in MS2 spectra allow them to be quantified individually.Open in a separate windowFig. 1.Histones are a challenge for quantitative mass spectrometry analyses. A, Human histone H3.1 and H4 protein sequences. B, Spline fitting to calculate AUC: blue lines are the original peaks and pink lines are the fitted peaks. C, An example of isobaric PTM modified peptides. The above MS2 is matched with H3K18ac, and the same MS2 is also matched with H3K23ac below. D, The workflow of EpiProfile: inputting precursor m/z and charge state, extracting elution profiles, selecting the correct chromatographic peak, calculating AUC, and outputting quantification tables and figures.There have been few computational investigations attempting to solve the problem of quantifying co-eluting isobaric peptides. DiMaggio et al. used a mixed integer linear optimization (MILP) framework to quantify partially co-eluting isobaric histone peptides from electron transfer dissociation (ETD) spectra (19). The framework is comprised of two MILP models: (1) enumerating the entire space of the modified forms that satisfy a given peptide mass and (2) determining the relative composition of the modified forms in the spectrum. Another study by Guan et al. identified isobaric peptides by searching ETD MS/MS spectra for ions representing all possible configurations of modified peptides using a visual assistance program. The relative abundances of these species were estimated by using a nonnegative least squares procedure (20). Other quantification programs can also perform accurate peak picking, but are commonly not as suitable for heavily modified and isobaric histone peptides (e.g. Skyline) (21). These software programs are unable to provide the layouts of histone peptides (i.e. relative RTs) or discriminate all isobaric modified peptides, two tasks that are vital for full characterization of a histone sample.In this study, we developed a new quantification program named EpiProfile. EpiProfile extracts ion chromatography for known histone peptides by using previous knowledge about their elution profiles. Moreover, it discriminates and quantifies the isobaric histone peptides by resolving the linear equations listed with the peak heights of unique fragment ions between the two modification sites in the MS2 spectra (e.g. ions between H3K9ac and H3K14ac). We evaluated the accuracy of EpiProfile by mixing different ratios of synthetic histone peptides, and then tested EpiProfile by analyzing nanoLC-MS/MS data sets of the following samples: purified histones from HeLa cells, a synthetic histone peptide library, and histone peptides labeled during cell growth with 13C-labeled glucose media or stable isotope labeling by amino acids in cell culture (SILAC) (22). We compared EpiProfile to manual quantification of the data, and also with the openly available program Skyline. We found that manual quantification is obviously time-consuming and that Skyline cannot generate the layouts of histone peptides and cannot discriminate four or six-component isobaric peptides, a common occurrence in histone data. Moreover, EpiProfile is highly flexible, and thus it can be used to analyze various protein samples, including isotopically labeled peptides and nonhistone data sets.  相似文献   
995.
When mouse embryonic fibroblasts in suspension contact a matrix-coated surface, they rapidly adhere and spread. Using total internal reflection fluorescence microscopy of dye-loaded fibroblasts to quantify cell-substrate contact, we found that increasing the surface matrix density resulted in faster spreading initiation whereas lamellipodial dynamics during spreading were unaltered. After spreading initiation, most cells spread in an anisotropic manner through stochastic, transient extension periods (STEPs) with approximately 30 STEPs over 10 min to reach an area of 1300 micro m(2) +/- 300 micro m(2). A second mode of spreading, increased in serum-deprived cells, lacked STEPs and spread in a rapid, isotropic manner for 1-4 min. This isotropic mode was characterized by a high rate of area increase, 340 micro m(2)/min with 78% of the cell edge extending. Anisotropic cells spread slower via STEPs, 126 micro m(2)/min with 34% of the edge extending. During the initial 2-4 min of fast, isotropic spreading, centripetal flow of actin was low (0.8 micro m/min) whereas in anisotropic cells it was high from early times (4.7 micro m/min). After initial isotropic spreading, rearward actin movement increased and isotropic cells displayed STEPs similar to anisotropic cells. Thus, the two cell states display dramatically different spreading whereas long-term motility is based on STEPs.  相似文献   
996.
GLUT2 is a facilitative glucose transporter, expressed in polarized epithelial cells of the liver, intestine, kidney and pancreas, where it plays a critical role in glucose homeostasis. Together with SGLT1/2, it mediates glucose absorption in metabolic epithelial tissues, where it can be translocated apically upon high glucose exposure. To track the subcellular localization and dynamics of GLUT2, we created an mCherry–hGLUT2 fusion protein and expressed it in multicellular kidney cysts, a major site of glucose reabsorption. Live imaging of GLUT2 enabled us to avoid the artefactual localization of GLUT2 in fixed cells and to confirm the apical GLUT2 model. Live cell imaging showed a rapid 15 ± 3 min PKC-dependent basal-to-apical translocation of GLUT2 in response to glucose stimulation and a fourfold slower basolateral translocation under starvation. These results mark the physiological importance of responding quickly to rising glucose levels. Importantly, we show that phloretin, an apple polyphenol, inhibits GLUT2 translocation in both directions, suggesting that it exerts its effect by PKC inhibition. Subcellular localization studies demonstrated that GLUT2 is endocytosed through a caveolae-dependent mechanism, and that it is at least partly recovered in Rab11A-positive recycling endosome. Our work illuminates GLUT2 dynamics, providing a platform for drug development for diabetes and hyperglycaemia.  相似文献   
997.
998.
Tendons consist of parallel longitudinal rows of cells separated by collagen fibres. The cells are in intimate contact longitudinally within rows, and laterally via sheet-like lateral cell processes between rows. At points of contact, they are linked by gap junctions. Since tendons stretch under load, such cell contacts require protection. Here we describe the organisation of the actin cytoskeleton and actin-based cell-cell interactions in vivo and examine the effect of cyclic tensile loading on tendon cells in vitro. Cells within longitudinal rows contained short longitudinally running actin stress fibres. Each fibre was aligned with similar fibres in the cells longitudinally on either side, and fibres appeared to be linked via adherens junctions. Overall, these formed long oriented rows of stress fibres running along the rows of tendon cells. In culture, junctional components n-cadherin and vinculin and the stress fibre component tropomyosin increased in strained cultures, whereas actin levels remained constant. These results suggest that: (1) cells are linked via actin-associated adherens junctions along the line of principal strain; and (2) under load, cells appear to attach themselves more strongly together, and assemble more of their cytoplasmic actin into stress fibres with tropomyosin. Taken together, this suggests that cell-cell contacts are protected during stretch, and also that the stress fibres, which are contractile, may provide an active mechanism for recovery from stretch. In addition, stress fibres are ideally oriented to monitor tensile load and thus may be important in mechanotransduction and the generation of signals passed via the gap junction network.  相似文献   
999.
The skeletal attachment of tendons--tendon "entheses"   总被引:9,自引:0,他引:9  
Tendon entheses can be classed as fibrous or fibrocartilaginous according to the tissue present at the skeletal attachment site. The former can be "bony" or "periosteal", depending on whether the tendon is directly attached to bone or indirectly to it via the periosteum. At fibrocartilaginous entheses, the uncalcified fibrocartilage dissipates collagen fibre bending and tendon narrowing away from the tidemark; calcified fibrocartilage anchors the tendon to the bone and creates a diffusion barrier between the two. Where there are additional fibrocartilaginous specialisations in the tendon and/or bone next to the enthesis, an "enthesis organ" is created that reduces wear and tear. Little attention has been paid to bone at entheses, despite the obvious bearing this has on the mechanical properties of the interface and the clinical importance of avulsion fractures. Disorders at entheses (enthesopathies) are common and occur in conditions such as diffuse idiopathic skeletal hyperostosis and the seronegative spondyloarthropathies. They are also commonly seen as sporting injuries such as tennis elbow and jumper's knee.  相似文献   
1000.
Biological ageing is connected to life history variation across ecological scales and informs a basic understanding of age-related declines in organismal function. Altered DNA methylation dynamics are a conserved aspect of biological ageing and have recently been modelled to predict chronological age among vertebrate species. In addition to their utility in estimating individual age, differences between chronological and predicted ages arise due to acceleration or deceleration of epigenetic ageing, and these discrepancies are linked to disease risk and multiple life history traits. Although evidence suggests that patterns of DNA methylation can describe ageing in plants, predictions with epigenetic clocks have yet to be performed. Here, we resolve the DNA methylome across CpG, CHG, and CHH-methylation contexts in the loblolly pine tree (Pinus taeda) and construct epigenetic clocks capable of predicting ages in this species within 6% of its maximum lifespan. Although patterns of CHH-methylation showed little association with age, both CpG and CHG-methylation contexts were strongly associated with ageing, largely becoming hypomethylated with age. Among age-associated loci were those in close proximity to malate dehydrogenase, NADH dehydrogenase, and 18S and 26S ribosomal RNA genes. This study reports one of the first epigenetic clocks in plants and demonstrates the universality of age-associated DNA methylation dynamics which can inform conservation and management practices, as well as our ecological and evolutionary understanding of biological ageing in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号