首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10408篇
  免费   957篇
  国内免费   5篇
  11370篇
  2023年   90篇
  2022年   204篇
  2021年   373篇
  2020年   210篇
  2019年   270篇
  2018年   292篇
  2017年   232篇
  2016年   400篇
  2015年   707篇
  2014年   725篇
  2013年   733篇
  2012年   1030篇
  2011年   939篇
  2010年   515篇
  2009年   388篇
  2008年   550篇
  2007年   571篇
  2006年   453篇
  2005年   400篇
  2004年   403篇
  2003年   310篇
  2002年   296篇
  2001年   58篇
  2000年   46篇
  1999年   48篇
  1998年   73篇
  1997年   33篇
  1996年   36篇
  1995年   29篇
  1994年   31篇
  1993年   35篇
  1992年   43篇
  1991年   36篇
  1990年   37篇
  1989年   31篇
  1988年   27篇
  1987年   27篇
  1985年   42篇
  1984年   34篇
  1983年   36篇
  1982年   31篇
  1981年   31篇
  1980年   32篇
  1979年   25篇
  1978年   32篇
  1977年   28篇
  1976年   35篇
  1975年   24篇
  1974年   36篇
  1973年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Ecosystems - Stream ecosystem metabolism contributes to global carbon cycling, yet predicting metabolism across ecosystems remains elusive. Even within stream segments, spatial variation in...  相似文献   
72.
During protein synthesis, elongation factor-Tu (EF-Tu) bound to GTP chaperones the entry of aminoacyl-tRNA (aa-tRNA) into actively translating ribosomes. In so doing, EF-Tu increases the rate and fidelity of the translation mechanism. Recent evidence suggests that EF-Ts, the guanosine nucleotide exchange factor for EF-Tu, directly accelerates both the formation and dissociation of the EF-Tu-GTP-Phe-tRNAPhe ternary complex (Burnett, B. J., Altman, R. B., Ferrao, R., Alejo, J. L., Kaur, N., Kanji, J., and Blanchard, S. C. (2013) J. Biol. Chem. 288, 13917–13928). A central feature of this model is the existence of a quaternary complex of EF-Tu/Ts·GTP·aa-tRNAaa. Here, through comparative investigations of phenylalanyl, methionyl, and arginyl ternary complexes, and the development of a strategy to monitor their formation and decay using fluorescence resonance energy transfer, we reveal the generality of this newly described EF-Ts function and the first direct evidence of the transient quaternary complex species. These findings suggest that EF-Ts may regulate ternary complex abundance in the cell through mechanisms that are distinct from its guanosine nucleotide exchange factor functions.  相似文献   
73.
The chemokines are a family of small chemoattractant proteins that have a range of functions, including activation and promotion of vectorial migration of leukocytes. Regulation on activation, normal T cell expressed and secreted (RANTES; CCL5), a member of the CC-chemokine subfamily, has been implicated in a variety of immune responses. In addition to the interaction of CC-chemokines with their cognate cell-surface receptors, it is known that they also bind to glycosaminoglycans (GAGs), including heparan sulfate. This potential for binding to GAG components of proteoglycans on the cell surface or within the extracellular matrix might allow formation of the stable chemokine concentration gradients necessary for leukocyte chemotaxis. In this study, we created a panel of mutant RANTES molecules containing neutral amino acid substitutions within putative, basic GAG-binding domains. Despite showing reduced binding to GAGs, it was found that each mutant containing a single amino acid substitution induced a similar leukocyte chemotactic response within a concentration gradient generated by free solute diffusion. However, we found that the mutant K45A had a significantly reduced potential to stimulate chemotaxis across a monolayer of microvascular endothelial cells. Significantly, this mutant bound to the CCR5 receptor and showed a potential to mobilize Ca(2+) with an affinity similar to the wild-type protein. These results show that the interaction between RANTES and GAGs is not necessary for specific receptor engagement, signal transduction, or leukocyte migration. However, this interaction is required for the induction of efficient chemotaxis through the extracellular matrix between confluent endothelial cells.  相似文献   
74.
Heterotopic ossification (HO) is the formation of bone outside of the skeleton which forms following major trauma, burn injuries, and orthopaedic surgical procedures. The majority of animal models used to study HO rely on the application of exogenous substances, such as bone morphogenetic protein (BMP), exogenous cell constructs, or genetic mutations in BMP signaling. While these models are useful they do not accurately reproduce the inflammatory states that cause the majority of cases of HO. Here we describe a burn/tenotomy model in mice that reliably produces focused HO. This protocol involves creating a 30% total body surface area partial thickness contact burn on the dorsal skin as well as division of the Achilles tendon at its midpoint. Relying solely on traumatic injury to induce HO at a predictable location allows for time-course study of endochondral heterotopic bone formation from intrinsic physiologic processes and environment only. This method could prove instrumental in understanding the inflammatory and osteogenic pathways involved in trauma-induced HO. Furthermore, because HO develops in a predictable location and time-course in this model, it allows for research to improve early imaging strategies and treatment modalities to prevent HO formation.  相似文献   
75.
Odors are initially represented in the olfactory bulb (OB) by patterns of sensory input across the array of glomeruli. Although activated glomeruli are often widely distributed, glomeruli responding to stimuli sharing molecular features tend to be loosely clustered and thus establish a fractured chemotopic map. Neuronal circuits in the OB transform glomerular patterns of sensory input into spatiotemporal patterns of output activity and thereby extract information about a stimulus. It is, however, unknown whether the chemotopic spatial organization of glomerular inputs is maintained during these computations. To explore this issue, we measured spatiotemporal patterns of odor-evoked activity across thousands of individual neurons in the zebrafish OB by temporally deconvolved two-photon Ca2+ imaging. Mitral cells and interneurons were distinguished by transgenic markers and exhibited different response selectivities. Shortly after response onset, activity patterns exhibited foci of activity associated with certain chemical features throughout all layers. During the subsequent few hundred milliseconds, however, MC activity was locally sparsened within the initial foci in an odor-specific manner. As a consequence, chemotopic maps disappeared and activity patterns became more informative about precise odor identity. Hence, chemotopic maps of glomerular input activity are initially transmitted to OB outputs, but not maintained during pattern processing. Nevertheless, transient chemotopic maps may support neuronal computations by establishing important synaptic interactions within the circuit. These results provide insights into the functional topology of neural activity patterns and its potential role in circuit function.  相似文献   
76.
77.
78.
Evolutionary Ecology - Understanding how environmental conditions affect trait expression in animals is important for estimating the evolutionary potential of that trait. Two different mechanisms...  相似文献   
79.
80.
Phosphoinositides control many different processes required for normal cellular function. Myotubularins are a family of Phosphatidylinositol 3-phosphate (PtdIns3P) phosphatases identified by the positional cloning of the MTM1 gene in patients suffering from X-linked myotubular myopathy and the MTMR2 gene in patients suffering from the demyelinating neuropathy Charcot-Marie-Tooth disease type 4B. MTM1 is a phosphatidylinositol phosphatase with reported specificity toward PtdIns3P, while the related proteins MTMR2 and MTMR3 hydrolyze both PtdIns3P and PtdIns(3,5)P2. We have investigated MTM1 and MTMR6 and find that they use PtdIns(3,5)P2 in addition to PtdIns3P as a substrate in vitro. The product of PtdIns(3,5)P2 hydrolysis, PtdIns5P, causes MTM1 to form a heptameric ring that is 12.5 nm in diameter, and it is a specific allosteric activator of MTM1, MTMR3, and MTMR6. A disease-causing mutation at arginine 69 of MTM1 falling within a putative pleckstrin homology domain reduces the ability of the enzyme to respond to PtdIns5P. We propose that the myotubularin family of enzymes utilize both PtdIns3P and PtdIns(3,5)P2 as substrates, and that PtdIns5P functions in a positive feedback loop controlling their activity. These findings highlight the importance of regulated phosphatase activity for the control of phosphoinositide metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号