首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10330篇
  免费   955篇
  国内免费   5篇
  11290篇
  2023年   89篇
  2022年   203篇
  2021年   368篇
  2020年   207篇
  2019年   267篇
  2018年   293篇
  2017年   235篇
  2016年   397篇
  2015年   709篇
  2014年   718篇
  2013年   728篇
  2012年   1026篇
  2011年   936篇
  2010年   514篇
  2009年   386篇
  2008年   543篇
  2007年   573篇
  2006年   443篇
  2005年   398篇
  2004年   394篇
  2003年   305篇
  2002年   293篇
  2001年   54篇
  2000年   42篇
  1999年   52篇
  1998年   77篇
  1997年   39篇
  1996年   39篇
  1995年   26篇
  1994年   29篇
  1993年   34篇
  1992年   43篇
  1991年   38篇
  1990年   37篇
  1989年   30篇
  1988年   27篇
  1987年   27篇
  1986年   22篇
  1985年   42篇
  1984年   36篇
  1983年   34篇
  1982年   32篇
  1981年   31篇
  1980年   32篇
  1979年   25篇
  1978年   32篇
  1977年   28篇
  1976年   34篇
  1975年   24篇
  1974年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
82.
Phosphoinositides control many different processes required for normal cellular function. Myotubularins are a family of Phosphatidylinositol 3-phosphate (PtdIns3P) phosphatases identified by the positional cloning of the MTM1 gene in patients suffering from X-linked myotubular myopathy and the MTMR2 gene in patients suffering from the demyelinating neuropathy Charcot-Marie-Tooth disease type 4B. MTM1 is a phosphatidylinositol phosphatase with reported specificity toward PtdIns3P, while the related proteins MTMR2 and MTMR3 hydrolyze both PtdIns3P and PtdIns(3,5)P2. We have investigated MTM1 and MTMR6 and find that they use PtdIns(3,5)P2 in addition to PtdIns3P as a substrate in vitro. The product of PtdIns(3,5)P2 hydrolysis, PtdIns5P, causes MTM1 to form a heptameric ring that is 12.5 nm in diameter, and it is a specific allosteric activator of MTM1, MTMR3, and MTMR6. A disease-causing mutation at arginine 69 of MTM1 falling within a putative pleckstrin homology domain reduces the ability of the enzyme to respond to PtdIns5P. We propose that the myotubularin family of enzymes utilize both PtdIns3P and PtdIns(3,5)P2 as substrates, and that PtdIns5P functions in a positive feedback loop controlling their activity. These findings highlight the importance of regulated phosphatase activity for the control of phosphoinositide metabolism.  相似文献   
83.
The Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney is a key determinant of Na(+) balance. Disturbances in NCC function are characterized by disordered volume and blood pressure regulation. However, many details concerning the mechanisms of NCC regulation remain controversial or undefined. This is partially due to the lack of a mammalian cell model of the DCT that is amenable to functional assessment of NCC activity. Previously reported investigations of NCC regulation in mammalian cells have either not attempted measurements of NCC function or have required perturbation of the critical without a lysine kinase (WNK)/STE20/SPS-1-related proline/alanine-rich kinase regulatory pathway before functional assessment. Here, we present a new mammalian model of the DCT, the mouse DCT15 (mDCT15) cell line. These cells display native NCC function as measured by thiazide-sensitive, Cl(-)-dependent (22)Na(+) uptake and allow for the separate assessment of NCC surface expression and activity. Knockdown by short interfering RNA confirmed that this function was dependent on NCC protein. Similar to the mammalian DCT, these cells express many of the known regulators of NCC and display significant baseline activity and dimerization of NCC. As described in previous models, NCC activity is inhibited by appropriate concentrations of thiazides, and phorbol esters strongly suppress function. Importantly, they display release of WNK4 inhibition of NCC by small hairpin RNA knockdown. We feel that this new model represents a critical tool for the study of NCC physiology. The work that can be accomplished in such a system represents a significant step forward toward unraveling the complex regulation of NCC.  相似文献   
84.
85.
The platelet microparticle proteome   总被引:4,自引:0,他引:4  
Platelet-derived microparticles are the most abundant type of microparticle in human blood and contribute to many biologically significant processes. Here, we report the first proteomic analysis of microparticles generated from activated platelets. Using 1D SDS-PAGE and liquid chromatography coupled to a linear ion trap mass spectrometer, the identification of 578 proteins was accomplished using a minimum of 5 MS/MS detections of at least two different peptides for each protein. These microparticles displayed many proteins intrinsic to and well-characterized on platelets. For example, microparticles in these experiments were found to contain membrane surface proteins including GPIIIa, GPIIb, and P-selectin, as well other platelet proteins such as the chemokines CXCL4, CXCL7, and CCL5. In addition, approximately 380 of the proteins identified were not found in two previous studies of the platelet proteome. Since several of the proteins detected here have been previously implicated in microparticle formation and/or pathological function, it is hoped that this study will help fuel future work concerning the possible role of microparticles in various disease states.  相似文献   
86.
The α-pore-forming toxin Cytolysin A (ClyA) is responsible for the hemolytic activity of various Escherichia coli and Salmonella enterica strains. Soluble ClyA monomers spontaneously assemble into annular dodecameric pore complexes upon contact with membranes or detergent. At ClyA monomer concentrations above ∼100 nm, the rate-limiting step in detergent- or membrane- induced pore assembly is the unimolecular reaction from the monomer to the assembly-competent protomer, which then oligomerizes rapidly to active pore complexes. In the absence of detergent, ClyA slowly forms soluble oligomers. Here we show that soluble ClyA oligomers cannot form dodecameric pore complexes after the addition of detergent and are hemolytically inactive. In addition, we demonstrate that the natural cysteine pair Cys-87/Cys-285 of ClyA forms a disulfide bond under oxidizing conditions and that both the oxidized and reduced ClyA monomers assemble to active pores via the same pathway in the presence of detergent, in which an unstructured, monomeric intermediate is transiently populated. The results show that the oxidized ClyA monomer assembles to pore complexes about one order of magnitude faster than the reduced monomer because the unstructured intermediate of oxidized ClyA is less stable and dissolves more rapidly than the reduced intermediate. Moreover, we show that oxidized ClyA forms soluble, inactive oligomers in the absence of detergent much faster than the reduced monomer, providing an explanation for several contradictory reports in which oxidized ClyA had been described as inactive.  相似文献   
87.
88.
Tropical forests are renowned for their high diversity, yet in many sites a single tree species accounts for the majority of the individuals in a stand. An explanation for these monodominant forests remains elusive, but may be linked to mycorrhizal symbioses. We tested three hypotheses by which ectomycorrhizas might facilitate the dominance of the tree, Oreomunnea mexicana, in montane tropical forest in Panama. We tested whether access to ectomycorrhizal networks improved growth and survival of seedlings, evaluated whether ectomycorrhizal fungi promote seedling growth via positive plant–soil feedback, and measured whether Oreomunnea reduced inorganic nitrogen availability. We found no evidence that Oreomunnea benefits from ectomycorrhizal networks or plant–soil feedback. However, we found three‐fold higher soil nitrate and ammonium concentrations outside than inside Oreomunnea‐dominated forest and a correlation between soil nitrate and Oreomunnea abundance in plots. Ectomycorrhizal effects on nitrogen cycling might therefore provide an explanation for the monodominance of ectomycorrhizal tree species worldwide.  相似文献   
89.
The co-evolution between hosts and parasites involves huge reciprocal selective pressures on both protagonists. However, relatively few reports have evaluated the impact of these reciprocal pressures on the molecular determinants at the core of the relevant interaction, such as the factors influencing parasitic virulence and host resistance. Here, we address this question in a host-parasite model that allows co-evolution to be monitored in the field: the interaction between the mollusc, Biomphalaria glabrata, and its trematode parasite, Schistosoma mansoni. Reactive oxygen species (ROS) produced by the haemocytes of B. glabrata are known to play a crucial role in killing S. mansoni. Therefore, the parasite must defend itself against oxidative damage caused by ROS using ROS scavengers in order to survive. In this context, ROS and ROS scavengers are involved in a co-evolutionary arms race, and their respective production levels by sympatric host and parasite could be expected to be closely related. Here, we test this hypothesis by comparing host oxidant and parasite antioxidant capabilities between two S. mansoni/B. glabrata populations that have co-evolved independently. As expected, our findings show a clear link between the oxidant and antioxidant levels, presumably resulting from sympatric co-evolution. We believe this work provides the first supporting evidence of the Red Queen Hypothesis of reciprocal evolution for functional traits at the field-level in a model involving a host and a eukaryotic parasite.  相似文献   
90.
A survey of six bee viruses on a large geographic scale was undertaken by using seemingly healthy bee colonies and the PCR technique. Samples of adult bees and pupae were collected from 36 apiaries in the spring, summer, and autumn during 2002. Varroa destructor samples were collected at the end of summer following acaricide treatment. In adult bees, during the year deformed wing virus (DWV) was found at least once in 97% of the apiaries, sacbrood virus (SBV) was found in 86% of the apiaries, chronic bee paralysis virus (CBPV) was found in 28% of the apiaries, acute bee paralysis virus (ABPV) was found in 58% of the apiaries, black queen cell virus (BQCV) was found in 86% of the apiaries, and Kashmir bee virus (KBV) was found in 17% of the apiaries. For pupae, the following frequencies were obtained: DWV, 94% of the apiaries; SBV, 80% of the apiaries; CBPV, none of the apiaries; ABPV, 23% of the apiaries; BQCV, 23% of the apiaries; and KBV, 6% of the apiaries. In Varroa samples, the following four viruses were identified: DWV (100% of the apiaries), SBV (45% of the apiaries), ABPV (36% of the apiaries), and KBV (5% of the apiaries). The latter findings support the putative role of mites in transmitting these viruses. Taken together, these data indicate that bee virus infections occur persistently in bee populations despite the lack of clinical signs, suggesting that colony disease outbreaks might result from environmental factors that lead to activation of viral replication in bees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号