首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10330篇
  免费   955篇
  国内免费   5篇
  11290篇
  2023年   89篇
  2022年   203篇
  2021年   368篇
  2020年   207篇
  2019年   267篇
  2018年   293篇
  2017年   235篇
  2016年   397篇
  2015年   709篇
  2014年   718篇
  2013年   728篇
  2012年   1026篇
  2011年   936篇
  2010年   514篇
  2009年   386篇
  2008年   543篇
  2007年   573篇
  2006年   443篇
  2005年   398篇
  2004年   394篇
  2003年   305篇
  2002年   293篇
  2001年   54篇
  2000年   42篇
  1999年   52篇
  1998年   77篇
  1997年   39篇
  1996年   39篇
  1995年   26篇
  1994年   29篇
  1993年   34篇
  1992年   43篇
  1991年   38篇
  1990年   37篇
  1989年   30篇
  1988年   27篇
  1987年   27篇
  1986年   22篇
  1985年   42篇
  1984年   36篇
  1983年   34篇
  1982年   32篇
  1981年   31篇
  1980年   32篇
  1979年   25篇
  1978年   32篇
  1977年   28篇
  1976年   34篇
  1975年   24篇
  1974年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo.  相似文献   
172.
We evaluated effects of the insect growth regulator pyriproxyfen on Bemisia tabaci (Gennadius) (B biotype) (Hemiptera: Aleyrodidae) males and females in laboratory bioassays. Insects were treated with pyriproxyfen as either eggs or nymphs. In all tests, the LC50 for a laboratory-selected resistant strain was at least 620 times greater than for an unselected susceptible strain. When insects were treated as eggs, survival did not differ between males and females of either strain. When insects were treated as nymphs, survival did not differ between susceptible males and susceptible females, but resistant males had higher mortality than resistant females. The dominance of resistance decreased as pyriproxyfen concentration increased. Resistance was partially or completely dominant at the lowest concentration tested and completely recessive at the highest concentration tested. Hybrid female progeny from reciprocal crosses between the susceptible and resistant strains responded alike in bioassays; thus, maternal effects were not evident. Rapid evolution of resistance to pyriproxyfen could occur if individuals in field populations had resistance with traits similar to those of the laboratory-selected strain examined here.  相似文献   
173.
A strain of the whitefly Bemisia tabaci (Gennadius) possessing unusually high levels of resistance to a wide range of insecticides was discovered in 2004 in the course of routine resistance monitoring in Arizona. The multiply resistant insects, collected from poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) plants purchased at a retail store in Tucson, were subjected to biotype analysis in three laboratories. Polyacrylamide gel electrophoresis of naphthyl esterases and sequencing of the mitochondrial cytochrome oxidase I gene (780 bp) confirmed the first detection of the Q biotype of B. tabaci in the New World. This U.S. Q biotype strain, referred to as Poinsettia'04, was highly resistant to two selective insect growth regulators, pyriproxyfen and buprofezin, and to mixtures of fenpropathrin and acephate. It was also unusually low in susceptibility to the neonicotinoid insecticides imidacloprid, acetamiprid, and thiamethoxam, relative to B biotype whiteflies. In 100 collections of whiteflies made in Arizona cotton (Gossypium spp.), vegetable, and melon (Cucumis melo L.) fields from 2001 to 2005, no Q biotypes were detected. Regions of the United States that were severely impacted by the introduction of the B biotype of B. tabaci in the 1980s would be well advised to promote measures that limit movement of the Q biotype from controlled environments into field systems and to formulate alternatives for managing this multiply-resistant biotype, in the event that it becomes more widely distributed.  相似文献   
174.
The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by “RTK swapping” by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.  相似文献   
175.
Sphingolipids are well established effectors of signal transduction downstream of the tumor necrosis factor (TNF) receptor. In a previous study, we showed that the sphingosine kinase/sphingosine 1-phosphate (S1P) pathway couples TNF receptor to induction of the cyclooxygenase 2 gene and prostaglandin synthesis (Pettus, B. J., Bielawski, J., Porcelli, A. M., Reames, D. L., Johnson, K. R., Morrow, J., Chalfant, C. E., Obeid, L. M., and Hannun, Y. A. (2003) FASEB J. 17, 1411-1421). In this study, the requirement for acid sphingomyelinase and sphingomyelin metabolites in the TNFalpha/prostaglandin E(2) (PGE(2)) pathway was investigated. The amphiphilic compound desipramine, a frequently employed inhibitor of acid sphingomyelinase (ASMase), blocked PGE(2) production. However, the action of desipramine was independent of its action on ASMase, since neither genetic loss of ASMase (Niemann-Pick fibroblasts) nor knockdown of ASMase using RNA interference affected TNFalpha-induced PGE(2) synthesis. Further investigations revealed that desipramine down-regulated acid ceramidase (AC), but not sphingosine kinase, at the protein level. This resulted in a time-dependent drop in sphingosine and S1P levels. Moreover, exogenous administration of either sphingosine or S1P rescued PGE(2) biosynthesis after desipramine treatment. Interestingly, knockdown of endogenous AC by RNA interference attenuated cyclooxygenase 2 induction by TNFalpha and subsequent PGE(2) biosynthesis. Taken together, these results define a novel role for AC in the TNFalpha/PGE(2) pathway. In addition, the results of this study warrant careful reconsideration of desipramine as a specific inhibitor for ASMase.  相似文献   
176.
Protein tyrosine phosphorylation is thought to be a unique feature of multicellular animals. Interestingly, the genome of the unicellular protist Monosiga brevicollis reveals a surprisingly high number and diversity of protein tyrosine kinases, protein tyrosine phosphatases (PTPs), and phosphotyrosine-binding domains. Our study focuses on a hypothetical SH2 domain-containing PTP (SHP), which interestingly has a predicted structure that is distinct from SHPs found in animals. In this study, we isolated cDNA of the enzyme and discovered that its actual sequence was different from the predicted sequence as a result of non-consensus RNA splicing. Contrary to the predicted structure with one SH2 domain and a disrupted phosphatase domain, Monosiga brevicollis SHP (MbSHP) contains two SH2 domains and an intact PTP domain, closely resembling SHP enzymes found in animals. We further expressed the full-length and SH2 domain-truncated forms of the enzyme in Escherichiacoli cells and characterized their enzymatic activities. The double-SH2 domain-truncated form of the enzyme effectively dephosphorylated a common PTP substrate with a specific activity among the highest in characterized PTPs, while the full-length and the N-terminal SH2 domain-truncated forms of the enzyme showed much lower activity with altered pH dependency and responses to ionic strength and common PTP inhibitors. This indicates that SH2 domains suppress the catalytic activity. SHP represents a highly conserved ancient PTP, and studying MbSHP should provide a better understanding about the evolution of tyrosine phosphorylation.  相似文献   
177.
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV-hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.Key words: UVB irradiation, p53, DNA damage, DNA damage responses, apoptosis, senescence  相似文献   
178.
Hayden BY  Gallant JL 《Neuron》2005,47(5):637-643
Attention can facilitate visual processing, emphasizing specific locations and highlighting stimuli containing specific features. To dissociate the mechanisms of spatial and feature-based attention, we compared the time course of visually evoked responses under different attention conditions. We recorded from single neurons in area V4 during a delayed match-to-sample task that controlled both spatial and feature-based attention. Neuronal responses increased when spatial attention was directed toward the receptive field and were modulated by the identity of the target of feature-based attention. Modulation by spatial attention was weaker during the early portion of the visual response and stronger during the later portion of the response. In contrast, modulation by feature-based attention was relatively constant throughout the response. It appears that stimulus onset transients disrupt spatial attention, but not feature attention. We conclude that spatial attention reflects a combination of stimulus-driven and goal-driven processes, while feature-based attention is purely goal driven.  相似文献   
179.
180.

Background  

Segmental duplications, or low-copy repeats, are common in mammalian genomes. In the human genome, most segmental duplications are mosaics comprised of multiple duplicated fragments. This complex genomic organization complicates analysis of the evolutionary history of these sequences. One model proposed to explain this mosaic patterns is a model of repeated aggregation and subsequent duplication of genomic sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号