首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10369篇
  免费   955篇
  国内免费   5篇
  11329篇
  2023年   89篇
  2022年   204篇
  2021年   368篇
  2020年   207篇
  2019年   267篇
  2018年   291篇
  2017年   232篇
  2016年   398篇
  2015年   706篇
  2014年   719篇
  2013年   727篇
  2012年   1024篇
  2011年   937篇
  2010年   511篇
  2009年   381篇
  2008年   541篇
  2007年   571篇
  2006年   446篇
  2005年   399篇
  2004年   400篇
  2003年   307篇
  2002年   300篇
  2001年   57篇
  2000年   41篇
  1999年   49篇
  1998年   73篇
  1997年   34篇
  1996年   37篇
  1995年   30篇
  1994年   30篇
  1993年   37篇
  1992年   43篇
  1991年   40篇
  1990年   41篇
  1989年   32篇
  1988年   27篇
  1987年   31篇
  1986年   23篇
  1985年   49篇
  1984年   39篇
  1983年   39篇
  1982年   33篇
  1981年   33篇
  1980年   32篇
  1979年   25篇
  1978年   34篇
  1977年   27篇
  1976年   36篇
  1975年   25篇
  1974年   35篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
41.
42.
Although the use of formant frequencies in nonhuman animal vocal communication systems has received considerable recent interest, only a few studies have examined the importance of these acoustic cues to body size during intra-sexual competition between males. Here we used playback experiments to present free-ranging male koalas with re-synthesised bellow vocalisations in which the formants were shifted to simulate either a large or a small adult male. We found that male looking responses did not differ according to the size variant condition played back. In contrast, male koalas produced longer bellows and spent more time bellowing when they were presented with playbacks simulating larger rivals. In addition, males were significantly slower to respond to this class of playback stimuli than they were to bellows simulating small males. Our results indicate that male koalas invest more effort into their vocal responses when they are presented with bellows that have lower formants indicative of larger rivals, but also show that males are slower to engage in vocal exchanges with larger males that represent more dangerous rivals. By demonstrating that male koalas use formants to assess rivals during the breeding season we have provided evidence that male-male competition constitutes an important selection pressure for broadcasting and attending to size-related formant information in this species. Further empirical studies should investigate the extent to which the use of formants during intra-sexual competition is widespread throughout mammals.  相似文献   
43.
In an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery. A new era of data‐model integration requires investment in accessible, scalable, and transparent tools that integrate the expertise of the whole community, including both modelers and empiricists. This roadmap focuses on five key opportunities for community tools: the underlying foundations of community cyberinfrastructure; data ingest; calibration of models to data; model‐data benchmarking; and data assimilation and ecological forecasting. This community‐driven approach is a key to meeting the pressing needs of science and society in the 21st century.  相似文献   
44.
The study is a survey of the shape and carbohydrate histochemistry of the endothelial cells lining the conus arteriosus of 10 species of elasmobranchs and the bulbus arteriosus of 80 species of teleosts. Intensely PAS-positive cells that were often tall, were found in many teleosts and were typical of phylogenetically advanced species. They were not seen in any elasmobranch. Most of the teleosts with strongly PAS-positive cells were marine fish or euryhaline animals that were caught in freshwater. Beyond this, it is difficult to generalize on their life-style or habitat, for they included small fish, large fish, fast swimmers, bottom-living forms, deep-water fish, littoral species and Antarctic "bloodless" forms. It is likely that the PAS-positivity of the endothelial cells can be attributed to the moderately-dense granules revealed by E.M., but as yet the significance of these is unclear.  相似文献   
45.
Post-translational modifications (PTMs) of histones play an important role in many cellular processes, notably gene regulation. Using a combination of mass spectrometric and immunobiochemical approaches, we show that the PTM profile of histone H3 differs significantly among the various model organisms examined. Unicellular eukaryotes, such as Saccharomyces cerevisiae (yeast) and Tetrahymena thermophila (Tet), for example, contain more activation than silencing marks as compared with mammalian cells (mouse and human), which are generally enriched in PTMs more often associated with gene silencing. Close examination reveals that many of the better-known modified lysines (Lys) can be either methylated or acetylated and that the overall modification patterns become more complex from unicellular eukaryotes to mammals. Additionally, novel species-specific H3 PTMs from wild-type asynchronously grown cells are also detected by mass spectrometry. Our results suggest that some PTMs are more conserved than previously thought, including H3K9me1 and H4K20me2 in yeast and H3K27me1, -me2, and -me3 in Tet. On histone H4, methylation at Lys-20 showed a similar pattern as H3 methylation at Lys-9, with mammals containing more methylation than the unicellular organisms. Additionally, modification profiles of H4 acetylation were very similar among the organisms examined.  相似文献   
46.
We present evidence that ethanol alters intracellular poly(adenosine diphosphoribose) metabolism and we further describe the mechanism by which ethanol exerts its effect on polymer synthesis. One percent ethanol stimulates polymer accumulation as much as 2.5-fold but does not alter polymer degradation in intact cells following DNA damage. Ethanol directly stimulates polymer synthesis following low doses of DNA damage induce by deoxyribonuclease I in a nucleotide-permeable cell system that does not possess a functional polymer turnover system. Ethanol has no measurable effect on polymer synthesis in undamaged nucleotide-permeable cells or in permeable cells treated with high doses of deoxyribonuclease I. Ethanol concentrations that stimulate poly(adenosine diphosphoribose) polymerase activity in vitro specifically lower KDNA without affecting KNAD or Vmax. The results clearly show that ethanol alters the binding of this enzyme to the DNA component of chromatin and that this altered binding is responsible for the activation of the enzyme. Altered affinity of poly(adenosine diphosphoribose) polymerase and perhaps other regulatory proteins for chromatin may play an important role in the pathology of alcohol.  相似文献   
47.
Raw meat sausage represents a unique ecological niche rich in nutrients for microbial consumption, making it particularly vulnerable to microbial spoilage. Starter cultures are applied to improve product stability and safety as well as flavour characteristics. However, the influence of starter cultures on microbial community assembly and succession throughout the fermentation process is largely unknown. In particular the effect on the fungal community has not yet been explored. We evaluate the microbiological status of four different raw meat sausages using high-throughput 16S rRNA gene and ITS2 gene sequencing. The objective was to study temporal changes of microbial composition during the fermentation process and to identify potential keystone species that play an important role within the microbial community. Our results suggest that fungi assigned to the species Debaryomyces hansenii and Alternaria alternata play a key role in microbial community dynamics during fermentation. In addition, bacteria related to the starter culture Lactobacillus sakei and the spoilage-associated genera Acinetobacter, Pseudomonas and Psychrobacter are central components of the microbial ecosystem in raw fermented sausages. Elucidating the exact role and interactions of these microorganisms has the potential to have direct impacts on the quality and safety of fermented foods.  相似文献   
48.
Infectious microbes face an unwelcoming environment in their mammalian hosts, which have evolved elaborate multicelluar systems for recognition and elimination of invading pathogens. A common strategy used by pathogenic bacteria to establish infection is to secrete protein factors that block intracellular signalling pathways essential for host defence. Some of these proteins also act as toxins, directly causing pathology associated with disease. Bacillus anthracis, the bacterium that causes anthrax, secretes two plasmid-encoded enzymes, LF (lethal factor) and EF (oedema factor), that are delivered into host cells by a third bacterial protein, PA (protective antigen). The two toxins act on a variety of cell types, disabling the immune system and inevitably killing the host. LF is an extraordinarily selective metalloproteinase that site-specifically cleaves MKKs (mitogen-activated protein kinase kinases). Cleavage of MKKs by LF prevents them from activating their downstream MAPK (mitogen-activated protein kinase) substrates by disrupting a critical docking interaction. Blockade of MAPK signalling functionally impairs cells of both the innate and adaptive immune systems and induces cell death in macrophages. EF is an adenylate cyclase that is activated by calmodulin through a non-canonical mechanism. EF causes sustained and potent activation of host cAMP-dependent signalling pathways, which disables phagocytes. Here I review recent progress in elucidating the mechanisms by which LF and EF influence host signalling and thereby contribute to disease.  相似文献   
49.
Ubiquitin-conjugating enzymes (E2s or Ubcs) are essential components in the ubiquitination apparatus. These enzymes accept ubiquitin from an E1 enzyme and then, usually with the aid of an E3 enzyme, donate the ubiquitin to the target protein. The function of E2 relies critically on the chemistry of its active site cysteine residue since this residue must form a thioester bond with the carboxyl terminus of ubiquitin. Despite the plethora of structural information that is available, there has been a notable dearth of information regarding the chemical basis of E2 function. Toward filling this large void in our understanding of E2 function, we have examined the pK(a) of the active site cysteine using a combination of experimental and theoretical approaches. We find, remarkably, that the pK(a) of the active site cysteine residue is elevated by approximately 2 pH units above that of a free cysteine. We have identified residues that contribute to the increase in this pK(a). On the basis of experimental values obtained with three different E2 proteins, we believe this to be a general and important characteristic of E2 protein chemistry. Sequence comparison suggests that the electrostatic environment is maintained not through strict residue conservation but through different combinations of residues near the active site. We propose that the elevated pK(a) is a regulatory mechanism that prevents the highly exposed cysteine residue in free E2 from reacting promiscuously with electron deficient chemical moieties in the cell.  相似文献   
50.
Intercellular tight junctions define epithelial apicobasal polarity and form a physical fence which protects underlying tissues from pathogen invasions. PALS1, a tight junction-associated protein, is a member of the CRUMBS3-PALS1-PATJ polarity complex, which is crucial for the establishment and maintenance of epithelial polarity in mammals. Here we report that the carboxy-terminal domain of the SARS-CoV E small envelope protein (E) binds to human PALS1. Using coimmunoprecipitation and pull-down assays, we show that E interacts with PALS1 in mammalian cells and further demonstrate that the last four carboxy-terminal amino acids of E form a novel PDZ-binding motif that binds to PALS1 PDZ domain. PALS1 redistributes to the ERGIC/Golgi region, where E accumulates, in SARS-CoV–infected Vero E6 cells. Ectopic expression of E in MDCKII epithelial cells significantly alters cyst morphogenesis and, furthermore, delays formation of tight junctions, affects polarity, and modifies the subcellular distribution of PALS1, in a PDZ-binding motif-dependent manner. We speculate that hijacking of PALS1 by SARS-CoV E plays a determinant role in the disruption of the lung epithelium in SARS patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号