首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10228篇
  免费   943篇
  国内免费   5篇
  2023年   77篇
  2022年   181篇
  2021年   368篇
  2020年   207篇
  2019年   267篇
  2018年   291篇
  2017年   232篇
  2016年   397篇
  2015年   704篇
  2014年   718篇
  2013年   726篇
  2012年   1021篇
  2011年   933篇
  2010年   511篇
  2009年   380篇
  2008年   539篇
  2007年   569篇
  2006年   441篇
  2005年   397篇
  2004年   394篇
  2003年   305篇
  2002年   292篇
  2001年   52篇
  2000年   40篇
  1999年   47篇
  1998年   73篇
  1997年   33篇
  1996年   36篇
  1995年   26篇
  1994年   29篇
  1993年   34篇
  1992年   42篇
  1991年   36篇
  1990年   37篇
  1989年   29篇
  1988年   26篇
  1987年   26篇
  1986年   21篇
  1985年   41篇
  1984年   34篇
  1983年   34篇
  1982年   31篇
  1981年   31篇
  1980年   32篇
  1979年   25篇
  1978年   32篇
  1977年   25篇
  1976年   34篇
  1975年   24篇
  1974年   35篇
排序方式: 共有10000条查询结果,搜索用时 82 毫秒
261.
262.
The influenza virus M2 protein is a well-validated yet underexploited proton-selective ion channel essential for influenza virus infectivity. Because M2 is a toxic viral ion channel, existing M2 inhibitors have been discovered through live virus inhibition or medicinal chemistry rather than M2-targeted high-throughput screening (HTS), and direct measurement of its activity has been limited to live cells or reconstituted lipid bilayers. Here, we describe a cell-free ion channel assay in which M2 ion channels are incorporated into virus-like particles (VLPs) and proton conductance is measured directly across the viral lipid bilayer, detecting changes in membrane potential, ion permeability, and ion channel function. Using this approach in high-throughput screening of over 100,000 compounds, we identified 19 M2-specific inhibitors, including two novel chemical scaffolds that inhibit both M2 function and influenza virus infectivity. Counterscreening for nonspecific disruption of viral bilayer ion permeability also identified a broad-spectrum antiviral compound that acts by disrupting the integrity of the viral membrane. In addition to its application to M2 and potentially other ion channels, this technology enables direct measurement of the electrochemical and biophysical characteristics of viral membranes.  相似文献   
263.
The Iberian mountain spiny fescues are a reticulate group of five diploid grass taxa consisting of three parental species and two putative hybrids: F. × souliei (F. eskia × F. quadriflora) and F. × picoeuropeana (F. eskia × F. gautieri). Phenotypic and molecular studies were conducted with the aim of determining the taxonomic boundaries and genetic relationships of the five taxa and disentangling the origins of the two hybrids. Statistical analyses of 31 selected phenotypic traits were conducted on individuals from 159 populations and on nine type specimens. Molecular analyses of random amplified polymorphic DNA (RAPD) markers were performed on 29 populations. The phenotypic analyses detected significant differences between the five taxa and demonstrated the overall intermediacy of the F. × picoeuropeana and F. × souliei between their respective parents. The RAPD analysis corroborated the genetic differentiation of F. eskia, F. gautieri and F. quadriflora and the intermediate nature of the two hybrids; however, they also detected genetic variation within F. × picoeuropeana. These results suggest distinct origins for F. × picoeuropeana in the Cantabrian and Pyrenean mountains, with the sporadic Pyrenean populations having potentially resulted from recent hybridizations and the stabilized Cantabrian ones from older events followed by potential displacements of the parents. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 676–706.  相似文献   
264.
Disruptions in microtubule motor transport are associated with a variety of neurodegenerative diseases. Post-translational modification of the cargo-binding domain of the light and heavy chains of kinesin has been shown to regulate transport, but less is known about how modifications of the motor domain affect transport. Here we report on the effects of phosphorylation of a mammalian kinesin motor domain by the kinase JNK3 at a conserved serine residue (Ser-175 in the B isoform and Ser-176 in the A and C isoforms). Phosphorylation of this residue has been implicated in Huntington disease, but the mechanism by which Ser-175 phosphorylation affects transport is unclear. The ATPase, microtubule-binding affinity, and processivity are unchanged between a phosphomimetic S175D and a nonphosphorylatable S175A construct. However, we find that application of force differentiates between the two. Placement of negative charge at Ser-175, through phosphorylation or mutation, leads to a lower stall force and decreased velocity under a load of 1 piconewton or greater. Sedimentation velocity experiments also show that addition of a negative charge at Ser-175 favors the autoinhibited conformation of kinesin. These observations imply that when cargo is transported by both dynein and phosphorylated kinesin, a common occurrence in the cell, there may be a bias that favors motion toward the minus-end of microtubules. Such bias could be used to tune transport in healthy cells when properly regulated but contribute to a disease state when misregulated.  相似文献   
265.
Spatiotemporal characteristics of gait such as step time and length are often associated with overall physical function in clinical populations, but can be difficult, time consuming and obtrusive to measure. This study assessed the concurrent validity of overground walking spatiotemporal data recorded using a criterion reference – a marker-based three-dimensional motion analysis (3DMA) system – and a low-cost, markerless alternative, the automated skeleton tracking output from the Microsoft Kinect™ (Kinect). Twenty-one healthy adults performed normal walking trials while being monitored using both systems. The outcome measures of gait speed, step length and time, stride length and time and peak foot swing velocity were derived using supervised automated analysis. To assess the agreement between the Kinect and 3DMA devices, Bland–Altman 95% bias and limits of agreement, percentage error, relative agreement (Pearson's correlation coefficients: r) overall agreement (concordance correlation coefficients: rc) and landmark location linearity as a function of distance from the sensor were determined. Gait speed, step length and stride length from the two devices possessed excellent agreement (r and rc values >0.90). Foot swing velocity possessed excellent relative (r=0.93) but only modest overall (rc=0.54) agreement. Step time (r=0.82 and rc=0.23) and stride time (r=0.69 and rc=0.14) possessed excellent and modest relative agreement respectively but poor overall agreement. Landmark location linearity was excellent (R2=0.991). This widely available, low-cost and portable system could provide clinicians with significant advantages for assessing some spatiotemporal gait parameters. However, caution must be taken when choosing outcome variables as some commonly reported variables cannot be accurately measured.  相似文献   
266.
Marine phytoplankton have conserved elemental stoichiometry, but there can be significant deviations from this Redfield ratio. Moreover, phytoplankton allocate reduced carbon (C) to different biochemical pools based on nutritional status and light availability, adding complexity to this relationship. This allocation influences physiology, ecology, and biogeochemistry. Here, we present results on the physiological and biochemical properties of two evolutionarily distinct model marine phytoplankton, a diatom (cf. Staurosira sp. Ehrenberg) and a chlorophyte (Chlorella sp. M. Beijerinck) grown under light and nitrogen resource gradients to characterize how carbon is allocated under different energy and substrate conditions. We found that nitrogen (N)‐replete growth rate increased monotonically with light until it reached a threshold intensity (~200 μmol photons · m?2 · s?1). For Chlorella sp., the nitrogen quota (pg · μm?3) was greatest below this threshold, beyond which it was reduced by the effect of N‐stress, while for Staurosira sp. there was no trend. Both species maintained constant maximum quantum yield of photosynthesis (mol C · mol photons?1) over the range of light and N‐gradients studied (although each species used different photophysiological strategies). In both species, C:chl a (g · g?1) increased as a function of light and N‐stress, while C:N (mol · mol?1) and relative neutral lipid:C (rel. lipid · g?1) were most strongly influenced by N‐stress above the threshold light intensity. These results demonstrated that the interaction of substrate (N‐availability) and energy gradients influenced C‐allocation, and that general patterns of biochemical responses may be conserved among phytoplankton; they provided a framework for predicting phytoplankton biochemical composition in ecological, biogeochemical, or biotechnological applications.  相似文献   
267.
Vitamin K is involved in the γ-carboxylation of the vitamin K-dependent proteins, and vitamin K epoxide is a by-product of this reaction. Due to the limited intake of vitamin K, its regeneration is necessary and involves vitamin K 2,3-epoxide reductase (VKOR) activity. This activity is known to be supported by VKORC1 protein, but recently a second gene, VKORC1L1, appears to be able to support this activity when the encoded protein is expressed in HEK293T cells. Nevertheless, this protein was described as being responsible for driving the vitamin K-mediated antioxidation pathways. In this paper we precisely analyzed the catalytic properties of VKORC1L1 when expressed in Pichia pastoris and more particularly its susceptibility to vitamin K antagonists. Vitamin K antagonists are also inhibitors of VKORC1L1, but this enzyme appears to be 50-fold more resistant to vitamin K antagonists than VKORC1. The expression of Vkorc1l1 mRNA was observed in all tissues assayed, i.e. in C57BL/6 wild type and VKORC1-deficient mouse liver, lung, and testis and rat liver, lung, brain, kidney, testis, and osteoblastic cells. The characterization of VKOR activity in extrahepatic tissues demonstrated that a part of the VKOR activity, more or less important according to the tissue, may be supported by VKORC1L1 enzyme especially in testis, lung, and osteoblasts. Therefore, the involvement of VKORC1L1 in VKOR activity partly explains the low susceptibility of some extrahepatic tissues to vitamin K antagonists and the lack of effects of vitamin K antagonists on the functionality of the vitamin K-dependent protein produced by extrahepatic tissues such as matrix Gla protein or osteocalcin.  相似文献   
268.
Both PTH and IL-6 signaling play pivotal roles in hematopoiesis and skeletal biology, but their interdependence is unclear. The purpose of this study was to evaluate the effect of IL-6 and soluble IL-6 receptor (sIL-6R) on hematopoietic and skeletal actions of PTH. In the bone microenvironment, PTH stimulated sIL-6R protein levels in primary osteoblast cultures in vitro and bone marrow in vivo in both IL-6+/+ and IL-6−/− mice. PTH-mediated hematopoietic cell expansion was attenuated in IL-6−/− compared with IL-6+/+ bone marrow, whereas sIL-6R treatment amplified PTH actions in IL-6−/− earlier than IL-6+/+ marrow cultures. Blocking sIL-6R signaling with sgp130 (soluble glycoprotein 130 receptor) inhibited PTH-dependent hematopoietic cell expansion in IL-6−/− marrow. In the skeletal system, although intermittent PTH administration to IL-6+/+ and IL-6−/− mice resulted in similar anabolic actions, blocking sIL-6R significantly attenuated PTH anabolic actions. sIL-6R showed no direct effects on osteoblast proliferation or differentiation in vitro; however, it up-regulated myeloid cell expansion and production of the mesenchymal stem cell recruiting agent, TGF-β1 in the bone marrow microenvironment. Collectively, sIL-6R demonstrated orphan function and mediated PTH anabolic actions in bone in association with support of myeloid lineage cells in the hematopoietic system.  相似文献   
269.
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号