首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10544篇
  免费   976篇
  国内免费   5篇
  11525篇
  2023年   89篇
  2022年   204篇
  2021年   371篇
  2020年   207篇
  2019年   271篇
  2018年   291篇
  2017年   232篇
  2016年   398篇
  2015年   705篇
  2014年   722篇
  2013年   729篇
  2012年   1023篇
  2011年   937篇
  2010年   518篇
  2009年   384篇
  2008年   545篇
  2007年   573篇
  2006年   451篇
  2005年   411篇
  2004年   405篇
  2003年   317篇
  2002年   299篇
  2001年   59篇
  2000年   50篇
  1999年   52篇
  1998年   77篇
  1997年   37篇
  1996年   38篇
  1995年   30篇
  1994年   31篇
  1993年   34篇
  1992年   48篇
  1991年   40篇
  1990年   41篇
  1989年   32篇
  1988年   29篇
  1987年   30篇
  1985年   43篇
  1984年   41篇
  1983年   38篇
  1982年   36篇
  1981年   32篇
  1980年   37篇
  1979年   28篇
  1978年   44篇
  1977年   35篇
  1976年   38篇
  1975年   31篇
  1974年   40篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Drosophila Smaug is a sequence-specific RNA-binding protein that can repress the translation and induce the degradation of target mRNAs in the early Drosophila embryo. Our recent work has uncovered a new mechanism of Smaug-mediated translational repression whereby it interacts with and recruits the Argonaute 1 (Ago1) protein to an mRNA. Argonaute proteins are typically recruited to mRNAs through an associated small RNA, such as a microRNA (miRNA). Surprisingly, we found that Smaug is able to recruit Ago1 to an mRNA in a miRNA-independent manner. This work suggests that other RNA-binding proteins are likely to employ a similar mechanism of miRNA-independent Ago recruitment to control mRNA expression. Our work also adds yet another mechanism to the list that Smaug can use to regulate its targets and here we discuss some of the issues that are raised by Smaug’s multi-functional nature.  相似文献   
72.
73.
Knowledge about the forces generating and conserving linkage disequilibrium (LD) is important for drawing conclusions about the prospects and limitations of association mapping. The objectives of our research were to examine the importance of (1) selection, (2) mutation, and (3) genetic drift for generating LD in a typical maize breeding program. We conducted computer simulations based on genotypic data of Central European maize open-pollinated varieties which have played an important role as founders of the European flint heterotic group. The breeding scheme and the dimensioning underlying our simulations reflect essentially the maize breeding program of the University of Hohenheim. Results suggested that in a plant breeding program of the examined dimension and breeding scheme, genetic drift and selection are major forces generating LD. The currently used population-based association mapping tests do not explicitly correct for LD caused by these two forces. Therefore, increased type I error rates are expected if these tests are applied to plant breeding populations. As a consequence, we recommend to use family-based association tests for association mapping approaches in plant breeding populations.  相似文献   
74.
Phytochromes play an important role in light signaling and photoperiodic control of flowering time in plants. Here we propose that the red/far-red light photoreceptor HvPHYTOCHROME C (HvPHYC), carrying a mutation in a conserved region of the GAF domain, is a candidate underlying the early maturity 5 locus in barley (Hordeum vulgare L.). We fine mapped the gene using a mapping-by-sequencing approach applied on the whole-exome capture data from bulked early flowering segregants derived from a backcross of the Bowman(eam5) introgression line. We demonstrate that eam5 disrupts circadian expression of clock genes. Moreover, it interacts with the major photoperiod response gene Ppd-H1 to accelerate flowering under noninductive short days. Our results suggest that HvPHYC participates in transmission of light signals to the circadian clock and thus modulates light-dependent processes such as photoperiodic regulation of flowering.  相似文献   
75.
Helicobacter pylori (Hp) infection triggers a chronic influx of polymorphonuclear leukocyte neutrophils (PMNs) into the gastric mucosa. Although Hp reside in a neutrophil-rich environment, how these organisms evade phagocytic killing is largely unexplored. We now show that live Hp (strains 11637, 60190, DT61A, and 11916) are readily ingested by PMNs and induce a rapid and strong respiratory burst that is comparable to PMA. Relative to other particulate stimuli, Hp are more potent activators of PMNs than opsonized zymosan, Staphylococcus aureus, or Salmonella. Strikingly, biochemical and microscopic analyses demonstrate that Hp disrupt NADPH oxidase targeting such that superoxide anions are released into the extracellular milieu and do not accumulate inside Hp phagosomes. Specifically, nascent Hp phagosomes acquire flavocytochrome b558 but do not efficiently recruit or retain p47phox or p67phox. Superoxide release peaks at 16 min coincident with the appearance of assembled oxidase complexes in patches at the cell surface. Oxidant release is regulated by formalin-resistant and heat-sensitive bacterial surface factors distinct from urease and Hp(2-20). Following opsonization with fresh serum, Hp triggers a modest respiratory burst that is confined to the phagosome, and ingested bacteria are eliminated. We conclude that disruption of NADPH oxidase targeting allows unopsonized Hp to escape phagocytic killing, and our findings support the hypothesis that bacteria and PMNs act in concert to damage the gastric mucosa.  相似文献   
76.
The extracellular availability of growth factors, hormones, chemokines, and neurotransmitters under gradient conditions is required for directional cellular responses such as migration, axonal pathfinding, and tissue patterning. These responses are, in turn, important in disease and developmental processes. This article addresses critical barriers toward devising a chemotaxis assay that is broadly applicable for different kinds of cancer cells through the design of a microfluidic chamber that produces a steep gradient of chemoattractant. Photolithography was used to create microchannels for chemoattractant delivery, flow diversion barriers/conduits, and small outlets in the form of apertures. The 1-μm apertures were made at the active surface by uncapping a thin (1.5 μm) layer of AZ1518. This process also created a vertical conduit that diverted the flow such that it occurred perpendicularly to the active, experimental surface where the gradients were measured. The other side of the vertical conduit opened to underlying 20-μm deep channels that carried microfluidic flows of tracer dyes/growth factors. Modeled data using computational fluid dynamics produced gradients that were steep along the horizontal, active surface. This simulation mirrors empirically derived gradients obtained from the flow analyses of fluorescent compounds. The open chamber contains a large buffer volume, which prevents chemoattractant saturation and permits easy cell and compound manipulation. The technique obviates the use of membranes or laminar flow that may hinder imaging, rinsing steps, cell seeding, and treatment. The utility of the chamber in the study of cell protrusion, an early step during chemotaxis, was demonstrated by growing cancer cells in the chamber, inducing a chemoattractant gradient using compressed air at 0.7 bar, and performing time-lapse microscopy. Breast cancer cells responded to the rapidly developed and stable gradient of epidermal growth factor by directing centroid positions toward the gradient and by forming a leading edge at a speed of 0.45 μm/min.  相似文献   
77.
The passive properties of skeletal muscle are often overlooked in muscle studies, yet they play a key role in tissue function in vivo. Studies analyzing and modeling muscle passive properties, while not uncommon, have never investigated the role of fluid content within the tissue. Additionally, intramuscular pressure (IMP) has been shown to correlate with muscle force in vivo and could be used to predict muscle force in the clinic. In this study, a novel model of skeletal muscle was developed and validated to predict both muscle stress and IMP under passive conditions for the New Zealand White Rabbit tibialis anterior. This model is the first to include fluid content within the tissue and uses whole muscle geometry. A nonlinear optimization scheme was highly effective at fitting model stress output to experimental stress data (normalized mean square error or NMSE fit value of 0.993) and validation showed very good agreement to experimental data (NMSE fit values of 0.955 and 0.860 for IMP and stress, respectively). While future work to include muscle activation would broaden the physiological application of this model, the passive implementation could be used to guide surgeries where passive muscle is stretched.  相似文献   
78.
Peatlands are important carbon reserves in terrestrial ecosystems. The microtopography of a peatland area has a strong influence on its carbon balance, determining carbon fluxes at a range of spatial scales. These patterned surfaces are very sensitive to changing climatic conditions. There are open research questions concerning the stability, behaviour and transformation of these microstructures, and the implications of these changes for the long-term accumulation of organic matter in peatlands. A simple two-dimensional peat microtopographical model was developed, which accounts for the effects of microtopographical variations and a dynamic water table on competitive interactions between peat-forming plants. In a case study of a subarctic mire in northern Sweden, we examined the consequences of such interactions on peat accumulation patterns and the transformation of microtopographical structure. The simulations demonstrate plausible interactions between peatland growth, water table position and microtopography, consistent with many observational studies, including an observed peat age profile from the study area. Our model also suggests that peatlands could exhibit alternative compositional and structural dynamics depending on the initial topographical and climatic conditions, and plant characteristics. Our model approach represents a step towards improved representation of peatland vegetation dynamics and net carbon balance in Earth system models, allowing their potentially important implications for regional and global carbon balances and biogeochemical and biophysical feedbacks to the atmosphere to be explored and quantified.  相似文献   
79.
Locking and unlocking of ribosomal motions   总被引:20,自引:0,他引:20  
Valle M  Zavialov A  Sengupta J  Rawat U  Ehrenberg M  Frank J 《Cell》2003,114(1):123-134
During the ribosomal translocation, the binding of elongation factor G (EF-G) to the pretranslocational ribosome leads to a ratchet-like rotation of the 30S subunit relative to the 50S subunit in the direction of the mRNA movement. By means of cryo-electron microscopy we observe that this rotation is accompanied by a 20 A movement of the L1 stalk of the 50S subunit, implying that this region is involved in the translocation of deacylated tRNAs from the P to the E site. These ribosomal motions can occur only when the P-site tRNA is deacylated. Prior to peptidyl-transfer to the A-site tRNA or peptide removal, the presence of the charged P-site tRNA locks the ribosome and prohibits both of these motions.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号