首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   49篇
  434篇
  2024年   1篇
  2022年   4篇
  2021年   13篇
  2020年   5篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   4篇
  2015年   19篇
  2014年   19篇
  2013年   26篇
  2012年   26篇
  2011年   27篇
  2010年   23篇
  2009年   18篇
  2008年   32篇
  2007年   29篇
  2006年   27篇
  2005年   18篇
  2004年   19篇
  2003年   20篇
  2002年   19篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   6篇
  1997年   5篇
  1995年   1篇
  1994年   1篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1971年   3篇
  1969年   2篇
  1968年   1篇
  1964年   1篇
排序方式: 共有434条查询结果,搜索用时 15 毫秒
81.
In the classic "What the frog's eye tells the frog's brain," Lettvin and colleagues showed that different types of retinal ganglion cell send specific kinds of information. For example, one type responds best to a dark, convex form moving centripetally (a fly). Here we consider a complementary question: how much information does the retina send and how is it apportioned among different cell types? Recording from guinea pig retina on a multi-electrode array and presenting various types of motion in natural scenes, we measured information rates for seven types of ganglion cell. Mean rates varied across cell types (6-13 bits . s(-1)) more than across stimuli. Sluggish cells transmitted information at lower rates than brisk cells, but because of trade-offs between noise and temporal correlation, all types had the same coding efficiency. Calculating the proportions of each cell type from receptive field size and coverage factor, we conclude (assuming independence) that the approximately 10(5) ganglion cells transmit on the order of 875,000 bits . s(-1). Because sluggish cells are equally efficient but more numerous, they account for most of the information. With approximately 10(6) ganglion cells, the human retina would transmit data at roughly the rate of an Ethernet connection.  相似文献   
82.
The Snf1/AMPK kinases are intracellular energy sensors, and the AMPK pathway has been implicated in a variety of metabolic human disorders. Here we report the crystal structure of the kinase domain from yeast Snf1, revealing a bilobe kinase fold with greatest homology to cyclin-dependant kinase-2. Unexpectedly, the crystal structure also reveals a novel homodimer that we show also forms in solution, as demonstrated by equilibrium sedimentation, and in yeast cells, as shown by coimmunoprecipitation of differentially tagged intact Snf1. A mapping of sequence conservation suggests that dimer formation is a conserved feature of the Snf1/AMPK kinases. The conformation of the conserved alphaC helix, and the burial of the activation segment and substrate binding site within the dimer, suggests that it represents an inactive form of the kinase. Taken together, these studies suggest another layer of kinase regulation within the Snf1/AMPK family, and an avenue for development of AMPK-specific activating compounds.  相似文献   
83.
84.
Metal complexes have emerged as promising and novel scaffolds for the design of enzyme inhibitors. Reported herein are the design, synthesis, and evaluation of protein kinase inhibition properties of pyridocarbazole half-sandwich complexes containing P-donor ligands. The nature of the monodentate P-donor ligand has a strong effect on protein kinase binding properties, most likely due to a direct interaction with the glycine-rich loop in the ATP-binding site. We furthermore discovered that PMe3 pyridocarbazole complexes are interesting lead structures for the design of potent inhibitors for the protein kinase TrkA for which we obtained a nanomolar organometallic inhibitor.  相似文献   
85.
Chemokine signals activate leukocyte integrins and actin remodeling machineries critical for leukocyte adhesion and motility across vascular barriers. The arrest of leukocytes at target blood vessel sites depends on rapid conformational activation of their α4 and β2 integrins by the binding of endothelial-displayed chemokines to leukocyte Gi-protein coupled receptors (GPCRs). A universal regulator of this event is the integrin-actin adaptor, talin1. Chemokine-stimulated GPCRs can transmit within fractions of seconds signals via multiple Rho GTPases, which locally raise plasma membrane levels of the talin activating phosphatidyl inositol, PtdIns(4,5)P2 (PIP2). Additional pools of GPCR stimulated Rac-1 and Rap-1 GTPases together with GPCR stimulated PLC and PI3K family members regulate the turnover of focal contacts of leukocyte integrins, induce the collapse of leukocyte microvilli, and promote polarized leukocyte crawling in search of exit cues. Concomitantly, other leukocyte GTPases trigger invasive protrusions into and between endothelial cells in search of basolateral chemokine exit cues. We will review here major findings and open questions related to these sequential guiding activities of endothelial presented chemokines, focusing mainly on lymphocyte-endothelial interactions as a paradigm for other leukocytes.  相似文献   
86.
Renal failure is associated with aortic valve calcification. Using our rat model of uremia-induced reversible aortic valve calcification, we assessed the role of apoptosis and survival pathways in that disease. We also explored the effects of raloxifene, an estrogen receptor modulator, on valvular calcification. Gene array analysis was performed in aortic valves obtained from three groups of rats (n = 7 rats/group): calcified valves obtained from rats fed with uremic diet, valves after calcification resolution following diet cessation, and control. In addition, four groups of rats (n = 10 rats/group) were used to evaluate the effect of raloxifene in aortic valve calcification: three groups as mentioned above and a fourth group fed with the uremic diet that also received daily raloxifene. Evaluation included imaging, histology, and antigen expression analysis. Gene array results showed that the majority of the altered expressed genes were in diet group valves. Most apoptosis-related genes were changed in a proapoptotic direction in calcified valves. Apoptosis and decreases in several survival pathways were confirmed in calcified valves. Resolution of aortic valve calcification was accompanied by decreased apoptosis and upregulation of survival pathways. Imaging and histology demonstrated that raloxifene significantly decreased aortic valve calcification. In conclusion, downregulation of several survival pathways and apoptosis are involved in the pathogenesis of aortic valve calcification. The beneficial effect of raloxifene in valve calcification is related to apoptosis modulation. This novel observation is important for developing remedies for aortic valve calcification in patients with renal failure.  相似文献   
87.
LEDGF/p75 is a chromatin-interacting, cellular cofactor of HIV integrase that dictates lentiviral integration site preference. In this study we determined the role of the PWWP domain of LEDGF/p75 in tethering and targeting of the lentiviral pre-integration complex, employing potent knockdown cell lines allowing analysis in the absence of endogenous LEDGF/p75. Deletion of the PWWP domain resulted in a diffuse subnuclear distribution pattern, loss of interaction with condensed chromatin, and failure to rescue proviral integration, integration site distribution, and productive virus replication. Substitution of the PWWP domain of LEDGF/p75 with that of hepatoma-derived growth factor or HDGF-related protein-2 rescued viral replication and lentiviral integration site distribution in LEDGF/p75-depleted cells. Replacing all chromatin binding elements of LEDGF/p75 with full-length hepatoma-derived growth factor resulted in more integration in genes combined with a preference for CpG islands. In addition, we showed that any PWWP domain targets SMYD1-like sequences. Analysis of integration preferences of lentiviral vectors for epigenetic marks indicates that the PWWP domain is critical for interactions specifying the relationship of integration sites to regions enriched in specific histone post-translational modifications.  相似文献   
88.
The co-translational modification of N-terminal acetylation is ubiquitous among eukaryotes and has been reported to have a wide range of biological effects. The human N-terminal acetyltransferase (NAT) Naa50p (NAT5/SAN) acetylates the α-amino group of proteins containing an N-terminal methionine residue and is essential for proper sister chromatid cohesion and chromosome condensation. The elevated activity of NATs has also been correlated with cancer, making these enzymes attractive therapeutic targets. We report the x-ray crystal structure of Naa50p bound to a native substrate peptide fragment and CoA. We found that the peptide backbone of the substrate is anchored to the protein through a series of backbone hydrogen bonds with the first methionine residue specified through multiple van der Waals contacts, together creating an α-amino methionine-specific pocket. We also employed structure-based mutagenesis; the results support the importance of the α-amino methionine-specific pocket of Naa50p and are consistent with the proposal that conserved histidine and tyrosine residues play important catalytic roles. Superposition of the ternary Naa50p complex with the peptide-bound Gcn5 histone acetyltransferase revealed that the two enzymes share a Gcn5-related N-acetyltransferase fold but differ in their respective substrate-binding grooves such that Naa50p can accommodate only an α-amino substrate and not a side chain lysine substrate that is acetylated by lysine acetyltransferase enzymes such as Gcn5. The structure of the ternary Naa50p complex also provides the first molecular scaffold for the design of NAT-specific small molecule inhibitors with possible therapeutic applications.  相似文献   
89.
90.
CTCF (CCCTC-binding factor) is a highly conserved multifunctional DNA-binding protein with thousands of binding sites genome-wide. Our previous work suggested that differences in CTCF’s binding site sequence may affect the regulation of CTCF recruitment and its function. To investigate this possibility, we characterized changes in genome-wide CTCF binding and gene expression during differentiation of mouse embryonic stem cells. After separating CTCF sites into three classes (LowOc, MedOc and HighOc) based on similarity to the consensus motif, we found that developmentally regulated CTCF binding occurs preferentially at LowOc sites, which have lower similarity to the consensus. By measuring the affinity of CTCF for selected sites, we show that sites lost during differentiation are enriched in motifs associated with weaker CTCF binding in vitro. Specifically, enrichment for T at the 18th position of the CTCF binding site is associated with regulated binding in the LowOc class and can predictably reduce CTCF affinity for binding sites. Finally, by comparing changes in CTCF binding with changes in gene expression during differentiation, we show that LowOc and HighOc sites are associated with distinct regulatory functions. Our results suggest that the regulatory control of CTCF is dependent in part on specific motifs within its binding site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号