首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   572篇
  免费   104篇
  2022年   3篇
  2021年   11篇
  2018年   8篇
  2016年   6篇
  2015年   12篇
  2014年   10篇
  2013年   26篇
  2012年   30篇
  2011年   36篇
  2010年   10篇
  2009年   11篇
  2008年   26篇
  2007年   17篇
  2006年   20篇
  2005年   23篇
  2004年   19篇
  2003年   25篇
  2002年   22篇
  2001年   33篇
  2000年   27篇
  1999年   31篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   19篇
  1991年   24篇
  1990年   10篇
  1989年   19篇
  1988年   11篇
  1987年   12篇
  1986年   19篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1978年   8篇
  1977年   5篇
  1976年   6篇
  1975年   3篇
  1974年   4篇
  1973年   9篇
  1972年   6篇
  1971年   15篇
  1970年   4篇
  1969年   7篇
  1967年   3篇
排序方式: 共有676条查询结果,搜索用时 31 毫秒
71.
The high-molecular-weight glutenin subunits (HMW-GS) of wheat gluten in their native form are incorporated into an intermolecularly disulfide-linked, polymeric system that gives rise to the elasticity of wheat flour doughs. These protein subunits range in molecular weight from about 70 K-90 K and are made up of small N-terminal and C-terminal domains and a large central domain that consists of repeating sequences rich in glutamine, proline, and glycine. The cysteines involved in forming intra- and intermolecular disulfide bonds are found in, or close to, the N- and C-terminal domains. A model has been proposed in which the repeating sequence domain of the HMW-GS forms a rod-like beta-spiral with length near 50 nm and diameter near 2 nm. We have sought to examine this model by using noncontact atomic force microscopy (NCAFM) to image a hybrid HMW-GS in which the N-terminal domain of subunit Dy10 has replaced the N-terminal domain of subunit Dx5. This hybrid subunit, coded by a transgene overexpressed in transgenic wheat, has the unusual characteristic of forming, in vivo, not only polymeric forms, but also a monomer in which a single disulfide bond links the C-terminal domain to the N-terminal domain, replacing the two intermolecular disulfide bonds normally formed by the corresponding cysteine side chains. No such monomeric subunits have been observed in normal wheat lines, only polymeric forms. NCAFM of the native, unreduced 93 K monomer showed fibrils of varying lengths but a length of about 110 nm was particularly noticeable whereas the reduced form showed rod-like structures with a length of about 300 nm or greater. The 110 nm fibrils may represent the length of the disulfide-linked monomer, in which case they would not be in accord with the beta-spiral model, but would favor a more extended conformation for the polypeptide chain, possibly polyproline II.  相似文献   
72.
A low molecular weight inhibitor (NCX(IF)) of the cardiac Na/Ca exchanger, isolated from the calf ventricle tissue, is capable of regulating the muscle strip's contractility and relaxation without involving the beta-activation pathway. The structural analysis of NCX(IF) requires highly purified preparations that fulfill the demanding requirements for mass spectra and NMR analyses. No such preparation is yet available. To this end, new HPLC procedures were developed by a combination of the reverse phase, normal phase, and HILIC (hydrophilic liquid chromatography) techniques. The specific activity of NCX(IF) is 10(5) times higher in the purified preparations (as compared to the crude extract) showing a 2-5% yield of total inhibitory activity and 20-100 microg content of final material. The purification yield reveals that 1 kg ventricle muscle contains 0.1-0.2 mg NCX(IF), meaning that the tissue concentrations of NCX(IF) may reach 10(-7)-10(-6) M. The diode-array scanning of purified preparations of NCX(IF) shows a homogeneous 3D peak with a maximal absorption at 202 nm. These spectral properties may represent a five-membered ring (e.g., proline, histidine) and/or simple chemical groups (like amine, carbonyl, ester, etc.), but not an aromatic ring or complex conjugates (alkyne, alkene, aldehyde, etc.). NCX(IF) does not respond to phenol/sulfur reagent, suggesting that it lacks reducing (aldo) sugar. NCX(IF) shows a faint response to fluorescamine, meaning that it may contain an amino group (or its derivative). It is believed that a combination of presently developed procedures with LC/MS and LC/MS/MS may provide a useful tool for structural analysis of NCX(IF).  相似文献   
73.
74.
75.
Angiotensin converting enzyme-2 (ACE2) is a recently described membrane-bound carboxypeptidase identified by its homology to ACE, the enzyme responsible for the formation of the potent vasoconstrictor angiotensin II (Ang II). ACE2 inactivates Ang II and is thus thought to act in a counter-regulatory fashion to ACE. ACE2 is highly expressed in epithelial cells of distal renal tubules, and recent evidence indicates that expression is increased in a range of renal diseases. A soluble form of ACE, generated by proteolytic cleavage of the membrane-bound form, has been shown to be present in urine; although evidence for a similar release of ACE2 has been reported in cell culture, it is not yet known whether this occurs in vivo. The present study has identified ACE2 in human urine, both by a sensitive fluorescence-based activity assay and by Western immunoblot. Levels of ACE2 were surprisingly higher than ACE, which may reflect preferential targeting of the enzyme to the luminal surface of the renal epithelium. Future studies will determine whether increased expression of ACE2 in renal diseases are reflected in higher urinary levels of this novel enzyme.Australian Peptide Conference Issue.  相似文献   
76.
The morphogenesis checkpoint provides a link between bud formation and mitosis in yeast. In this pathway, insults affecting the actin or septin cytoskeleton trigger a cell cycle arrest, mediated by the Wee1 homolog Swe1p, which catalyzes the inhibitory phosphorylation of the mitosis-promoting cyclin-dependent kinase (CDK) on a conserved tyrosine residue. Analyses of Swe1p phosphorylation have mapped 61 sites targeted by CDKs and Polo-related kinases, which control both Swe1p activity and Swe1p degradation. Although the sites themselves are not evolutionarily conserved, the control of Swe1p degradation exhibits many conserved features, and is linked to DNA-responsive checkpoints in vertebrate cells. At the 'sensing' end of the checkpoint, recent work has begun to shed light on how septins are organized and how they impact Swe1p regulators. However, the means by which Swe1p responds to actin perturbations once a bud has formed remains controversial.  相似文献   
77.
78.
79.
In cancer, glucose uptake and glycolysis are increased regardless of the oxygen concentration in the cell, a phenomenon known as the Warburg effect. Several (but not all) glycolytic enzymes have been investigated as potential therapeutic targets for cancer treatment using RNAi. Here, four previously untargeted glycolytic enzymes, aldolase A, glyceraldehyde 3-phosphate dehydrogenase, triose phosphate isomerase, and enolase 1, are targeted using RNAi in Ras-transformed NIH-3T3 cells. Of these enzymes, knockdown of aldolase causes the greatest effect, inhibiting cell proliferation by 90%. This defect is rescued by expression of exogenous aldolase. However, aldolase knockdown does not affect glycolytic flux or intracellular ATP concentration, indicating a non-metabolic cause for the cell proliferation defect. Furthermore, this defect could be rescued with an enzymatically dead aldolase variant that retains the known F-actin binding ability of aldolase. One possible model for how aldolase knockdown may inhibit transformed cell proliferation is through its disruption of actin-cytoskeleton dynamics in cell division. Consistent with this hypothesis, aldolase knockdown cells show increased multinucleation. These results are compared with other studies targeting glycolytic enzymes with RNAi in the context of cancer cell proliferation and suggest that aldolase may be a useful target in the treatment of cancer.  相似文献   
80.
Variously substituted indolin-2-ones were synthesized and evaluated for activity against KDR, Flt-1, FGFR-1 and PDGFR. Extension at the 5-position of the oxindole ring with ethyl piperidine (compound 7i) proved to be the most beneficial for attaining both biochemical and cellular potencies. Further optimization of 7i to balance biochemical and cellular potencies with favorable ADME/ PK properties led to the identification of 8h, a compound with a clean CYP profile, acceptable pharmacokinetic and toxicity profiles, and robust efficacy in multiple xenograft tumor models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号