首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1212篇
  免费   43篇
  国内免费   1篇
  2022年   6篇
  2018年   11篇
  2017年   12篇
  2016年   16篇
  2015年   20篇
  2014年   40篇
  2013年   55篇
  2012年   55篇
  2011年   59篇
  2010年   47篇
  2009年   32篇
  2008年   66篇
  2007年   60篇
  2006年   59篇
  2005年   49篇
  2004年   67篇
  2003年   43篇
  2002年   63篇
  2001年   19篇
  2000年   18篇
  1999年   9篇
  1998年   18篇
  1997年   14篇
  1996年   18篇
  1995年   7篇
  1994年   15篇
  1993年   8篇
  1992年   15篇
  1991年   8篇
  1990年   11篇
  1989年   8篇
  1988年   16篇
  1987年   14篇
  1986年   6篇
  1985年   11篇
  1984年   19篇
  1983年   22篇
  1982年   15篇
  1981年   27篇
  1980年   24篇
  1979年   12篇
  1978年   27篇
  1977年   12篇
  1976年   18篇
  1975年   15篇
  1974年   14篇
  1973年   9篇
  1968年   8篇
  1964年   8篇
  1961年   5篇
排序方式: 共有1256条查询结果,搜索用时 796 毫秒
941.
In response to pain, neurokinin 1 (NK1) receptor availability is altered in the central nervous system. The NK1 receptor and its primary agonist, substance P, also play a crucial role in peripheral tissue in response to pain, as part of neurogenic inflammation. However, little is known about alterations in NK1 receptor availability in peripheral tissue in chronic pain conditions and very few studies have been performed on human beings. Ten subjects with chronic tennis elbow were therefore examined by positron emission tomography (PET) with the NK1 specific radioligand [11C]GR205171 before and after treatment with graded exercise. The radioligand signal intensity was higher in the affected arm as compared with the unaffected arm, measured as differences between the arms in volume of voxels and signal intensity of this volume above a reference threshold set as 2.5 SD above mean signal intensity of the unaffected arm before treatment. In the eight subjects examined after treatment, pain ratings decreased in all subjects but signal intensity decreased in five and increased in three. In conclusion, NK1 receptors may be activated, or up-regulated in the peripheral, painful tissue of a chronic pain condition. This up-regulation does, however, have moderate correlation to pain ratings. The increased NK1 receptor availability is interpreted as part of ongoing neurogenic inflammation and may have correlation to the pathogenesis of chronic tennis elbow.

Trial Registration

ClinicalTrials.gov NCT00888225 http://clinicaltrials.gov/  相似文献   
942.
Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation (E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise (E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset andE slope below RC (P<0.05). In hypoxia, MCAv and E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or E slope below RC (P>0.05). The E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the ‘normal’ cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.  相似文献   
943.
944.
The amyloid-cascade hypothesis posits that the role of amyloid β-peptide (Aβ) in Alzheimer disease (AD) involves polymerization into structures that eventually are deposited as amyloid plaques. During this process, neurotoxic oligomers are formed that induce synaptic loss and neuronal death. Several different isoforms of Aβ are produced, of which the 40 and 42 residue variants (Aβ40 and Aβ42) are the most common. Aβ42 has a strong tendency to form neurotoxic aggregates and is involved in AD pathogenesis. Longer Aβ isoforms, like the less studied Aβ43, are gaining attention for their higher propensity to aggregate into neurotoxic oligomers. To further investigate Aβ43 in AD, we conducted a quantitative study on Aβ43 levels in human brain. We homogenized human brain tissue and prepared fractions of various solubility; tris buffered saline (TBS), sodium dodecyl sulfate (SDS) and formic acid (FA). Levels of Aβ43, as well as Aβ40 and Aβ42, were quantified using ELISA. We compared quantitative data showing Aβ levels in occipital and frontal cortex from sporadic (SAD) and familial (FAD) AD cases, as well as non-demented (ND) controls. Results showed Aβ43 present in each fraction from the SAD and FAD cases, while its level was lower than the detection limit in the majority of the ND-cases. Aβ42 and Aβ43 were enriched in the less soluble fractions (SDS and FA) of SAD and FAD cases in both occipital and frontal cortex. Thus, although the total levels of Aβ43 in human brain are low compared to Aβ40 and Aβ42, we suggest that Aβ43 could initiate the formation of oligomers and amyloid plaques and thereby be crucial to AD pathogenesis.  相似文献   
945.

Background

Coping with the immune rejection of allotransplants or autologous cells in patients with an active sensitization towards their autoantigens and autoimmunity presently necessitates life-long immune suppressive therapy acting on the immune system as a whole, which makes the patients vulnerable to infections and increases their risk of developing cancer. New technologies to induce antigen selective long-lasting immunosuppression or immune tolerance are therefore much needed.

Methodology/Principal Findings

The DNA demethylating agent Zebularine, previously demonstrated to induce expression of the genes for the immunosuppressive enzymes indolamine-2,3-deoxygenase-1 (IDO1) and kynureninase of the kynurenine pathway, is tested for capacity to suppress rejection of allotransplants. Allogeneic pancreatic islets from Lewis rats were transplanted under the kidney capsule of Fischer rats previously made diabetic by a streptozotocin injection (40 mg/kg). One group was treated with Zebularine (225 mg/kg) daily for 14 days from day 6 or 8 after transplantation, and a control group received no further treatment. Survival of the transplants was monitored by blood sugar measurements. Rats, normoglycemic for 90 days after allografting, were subjected to transplant removal by nephrectomy to confirm whether normoglycemia was indeed due to a surviving insulin producing transplant, or alternatively was a result of recovery of pancreatic insulin production in some toxin-treated rats. Of 9 Zebularine treated rats, 4 were still normoglycemic after 90 days and became hyperglycemic after nephrectomy. The mean length of normoglycemia in the Zebularine group was 67±8 days as compared to 14±3 days in 9 controls. Seven rats (2 controls and 5 Zebularine treated) were normoglycemic at 90 days due to pancreatic recovery as demonstrated by failure of nephrectomy to induce hyperglycemia.

Conclusions/Significance

Zebularine treatment in vivo induces a long-lasting suppression of the immune destruction of allogeneic pancreatic islets resulting in protection of allograft function for more than 10 weeks after end of treatment.  相似文献   
946.
The present study was performed to investigate the effects of systemic atrial natriuretic peptide (ANP) infusion on the glomerular permeability to macromolecules in rats. In anesthetized Wistar rats (250-280 g), the left urether was cannulated for urine collection while simultaneously blood access was achieved. Rats were continuously infused intravenously with ANP [30 ng·kg(-1)·min(-1) (Lo-ANP; n=8) or 800 ng·kg(-1)·min(-1) (Hi-ANP; n=10)] or 0.9% NaCl (SHAM; n=16), respectively, and with polydisperse FITC-Ficoll-70/400 (molecular radius 13-90 ?) and 51Cr-EDTA for 2 h. Plasma and urine samples were taken at 5, 15, 30, 60, and 120 min of ANP infusion and analyzed by high-performance size-exclusion chromatography (HPLC) for determination of glomerular sieving coefficients (θ) for Ficoll. GFR was also assessed (51Cr-EDTA). In Hi-ANP, there was a rapid (within 5 min), but bimodal, increase in glomerular permeability. θ to high-molecular-weight Ficoll thus reached a maximum at 15 min, after which θ returned to near control at 30 min, to again increase moderately at 60 and 120 min. In Lo-ANP, there was also a rapid, reversible increase in glomerular θ, returning to near control at 30 min, followed by just a tendency of a sustained increase in permeability, but with a significant increase in "large-pore" radius. In conclusion, in Hi-ANP there was a rapid increase in glomerular permeability, with an early, partly reversible permeability peak, followed by a (moderate) sustained increase in permeability. In Lo-ANP animals, only the initial permeability peak was evident. In both Lo-ANP and Hi-ANP, the glomerular sieving pattern observed was found to mainly reflect an increase in the number and radius of large pores in the glomerular filter.  相似文献   
947.
Inhibition of acetyl-CoA carboxylases has the potential for modulating long chain fatty acid biosynthesis and mitochondrial fatty acid oxidation. Hybridization of weak inhibitors of ACC2 provided a novel, moderately potent but lipophilic series. Optimization led to compounds 33 and 37, which exhibit potent inhibition of human ACC2, 10-fold selectivity over inhibition of human ACC1, good physical and in vitro ADME properties and good bioavailability. X-ray crystallography has shown this series binding in the CT-domain of ACC2 and revealed two key hydrogen bonding interactions. Both 33 and 37 lower levels of hepatic malonyl-CoA in vivo in obese Zucker rats.  相似文献   
948.
We describe a bioinformatic tool, Tumor Aberration Prediction Suite (TAPS), for the identification of allele-specific copy numbers in tumor samples using data from Affymetrix SNP arrays. It includes detailed visualization of genomic segment characteristics and iterative pattern recognition for copy number identification, and does not require patient-matched normal samples. TAPS can be used to identify chromosomal aberrations with high sensitivity even when the proportion of tumor cells is as low as 30%. Analysis of cancer samples indicates that TAPS is well suited to investigate samples with aneuploidy and tumor heterogeneity, which is commonly found in many types of solid tumors.  相似文献   
949.

Introduction  

Mer and Tyro3 are receptor tyrosine kinases important for the phagocytosis of apoptotic cells. Together with Axl, they constitute the TAM receptor family. These receptors can be shed from the cell membrane and their soluble extracellular regions can be found in plasma. The objective of this study was to elucidate whether the plasma levels of soluble Mer (sMer) and Tyro3 (sTyro3) were increased in systemic lupus erythematosis (SLE), rheumatoid arthritis (RA), or critical limb ischemia (CLI).  相似文献   
950.
Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans   总被引:1,自引:0,他引:1  
Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respiration. High resolution respirometry was used to quantify mitochondrial respiration from the biopsies of arm and leg muscles while in-vivo arm and leg VO(2) were determined by the Fick method during leg cycling and arm cranking. We hypothesized that muscle mitochondrial respiratory rate exceeds that of systemic oxygen delivery. The state 3 mitochondrial respiration of the deltoid muscle (4.3±0.4 mmol o(2)kg(-1) min(-1)) was similar to the in-vivo VO(2) during maximal arm cranking (4.7±0.5 mmol O(2) kg(-1) min(-1)) with 6 kg muscle. In contrast, the mitochondrial state 3 of the quadriceps was 6.9±0.5 mmol O(2) kg(-1) min(-1), exceeding the in-vivo leg VO(2) max (5.0±0.2 mmol O(2) kg(-1) min(-1)) during leg cycling with 20 kg muscle (P<0.05). Thus, when half or more of the body muscle mass is engaged during exercise, muscle mitochondrial respiratory capacity surpasses in-vivo VO(2) max. The findings reveal an excess capacity of muscle mitochondrial respiratory rate over O(2) delivery by the circulation in the cascade defining maximal oxidative rate in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号