首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   10篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1995年   1篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   2篇
排序方式: 共有88条查询结果,搜索用时 234 毫秒
21.
In the rainbow trout (Oncorhynchus mykiss), we studied the acute toxicity LC(50)-96 h of 274 organic pesticides with a wide variety of molecular structures. Optimization of correlation weights of local and global graph invariants (OCWLGI) gave quantitative structure-activity relationships (QSARs) for predicting toxicity. We used a labeled hydrogen-filled graph (LHFG) to elucidate the molecular structure. We also used the extended connectivity of zero ((0)EC(k)), first ((1)EC(k)), and second ((2)EC(k)) order, numbers of path lengths 2 (P2(k)) and 3 (P3(k)) starting from a given vertex in the LHFG, and valence shells of second order (S2(k)). S2(k) is the sum of the degree of vertices at distance 2 from a given vertex k. The presence of three-, five-, and six-member cycles and hydrogen bond indices suggested they might be used as global LHFG invariants. We applied this method to a broad set of pesticides, to predict toxicity for the trout. The best model used weighted S2(k) and global LHFG invariants. Statistical characteristics of this model are as follows: n=233, r(2)=0.7689, r(2)(pred)=0.7688, s=0.75, F=769 (training set); n=41, r(2)=0.6421, r(2)(pred)=0.4241, s=1.14, F=70 (test set).  相似文献   
22.

Background

Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.

Methodology/Findings

Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine) and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated), and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486). On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats). Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.

Conclusions/Significance

Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress, shown here for the first time, could be related to the therapeutic action of these drugs.  相似文献   
23.
Glutamate-mediated excitotoxicity plays a major role in the degeneration of motor neurons in amyotrophic lateral sclerosis and reduced astrocytary glutamate transport, which in turn increases the synaptic availability of the amino acid neurotransmitter, was suggested as a cause. Alternatively, here we report our studies on the exocytotic release of glutamate as a possible source of excessive glutamate transmission. The basal glutamate efflux from spinal cord nerve terminals of mice-expressing human soluble superoxide dismutase (SOD1) with the G93A mutation [SOD1/G93A(+)], a transgenic model of amyotrophic lateral sclerosis, was elevated when compared with transgenic mice expressing the wild-type human SOD1 or to non-transgenic controls. Exposure to 15 mM KCl or 0.3 μM ionomycin provoked Ca(2+)-dependent glutamate release that was dramatically increased in late symptomatic and in pre-symptomatic SOD1/G93A(+) mice. Increased Ca(2+) levels were detected in SOD1/G93A(+) mouse spinal cord nerve terminals, accompanied by increased activation of Ca(2+)/calmodulin-dependent kinase II and increased phosphorylation of synapsin I. In line with these findings, release experiments suggested that the glutamate release augmentation involves the readily releasable pool of vesicles and a greater capability of these vesicles to fuse upon stimulation in SOD1/G93A(+) mice.  相似文献   
24.
VP16 was submitted to oxidation catalyzed by horseradish peroxidase (HRP) and H2O2 in phosphate buffer (pH 7.0). The product of the reaction, which has a high performance liquid chromatographic (HPLC) retention time different from the previously known metabolites of VP16, was identified as 1,2,3,4-tetradehydro-VP16 by 1H-NMR and mass spectrometry (MS) analysis. It was found to result from the loss of four hydrogens and the formation of an aromatic ring (ring C of VP16). This new product retains, in the 4' position of the E ring of VP16, the hydroxy group which is crucial for the antitumoral activity of podophyllotoxin derivatives. The reaction was linear in a wide range of VP16 concentrations and was dependent on the concomitant presence of peroxidase and H2O2.  相似文献   
25.
Synapsin I is a synaptic vesicle-specific phosphoprotein which is able to bind and bundle actin filaments in a phosphorylation-dependent fashion. In the present paper we have analyzed the effects of synapsin I on the kinetics of actin polymerization and their modulation by site-specific phosphorylation of synapsin I. We found that dephosphorylated synapsin I accelerates the initial rate of actin polymerization and decreases the rate of filament elongation. The effect was observed at both low and high ionic strength, was specific for synapsin I, and was still present when polymerization was triggered by F-actin seeds. Dephosphorylated synapsin I was also able to induce actin polymerization and bundle formation in the absence of KCl and MgCl2. The effects of synapsin I were strongly decreased after its phosphorylation by Ca2+/calmodulin-dependent protein kinase II. These observations suggest that synapsin I has a phosphorylation-dependent nucleating effect on actin polymerization. The data are compatible with the view that changes in the phosphorylation state of synapsin I play a functional role in regulating the interactions between the nerve terminal cytoskeleton and synaptic vesicles in various stages of the exoendocytotic cycle.  相似文献   
26.
Some effects of aging processes on the neurochemical features of central transmitter-identified neuronal populations have been investigated by means of immunocytochemistry and receptor autoradiographic techniques coupled with image analysis. A selective decrease of tyrosine hydroxylase immunoreactivity in the ventrolateral region of the arcuate nucleus in aged rats was observed. The level and turnover (recovery after irreversible blockade of monoamine receptors with the peptide coupling agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline) of 2-adrenergic ([3H]paraaminoclonidine binding) and D2 dopamine ([3H]spiperone binding) receptors were reduced in most regions of the rat brain. Peptide receptors showed a more complex pattern of change, since while μ opiate receptors (preferentially labeled with [3H]etorphine binding) were reduced in the old animals, δ opiate ([3H]DSTLenkephalin binding) receptors were affected only in certain areas. The effect of irreversible blockade of monoamine receptors on μ and δ opiate receptors was also studied in young adult and aged rats. A δ but not μ opiate receptor up-regulation was observed after monoamine receptor blockade in the young adult animals. This effect was greatly reduced in the n. caudatus-putamen, n. accumbens and tuberculum olfactorium of the old animals.  相似文献   
27.
Some aspects of the communicational and computational features of the central nervous system are discussed. The existence in the central nervous system of two main types of interneuronal communication, the wiring (i.e. the classical type of synaptic transmission) and the volume (i.e. a humoral type of non-synaptic transmission) transmission, has been proposed. Some features of these types of transmission are discussed, with special reference to the informational properties of peptide transmitters. With respect to the computational aspects of neural function, the identification of putative computational structures at the macroscopic (network) and microscopic (local circuit, synapse) levels suggests the existence of a computational hierarchical organization. In this context, the existence of a compartmental organization of various cerebral regions is discussed. It is hypothesized that membrane domains, made by patches of membrane in which preselected molecular movements are possible resulting in molecular interactions, can have an important role in the integrative capabilities of neural tissue. The coexistence of multiple neuroactive substances in central synapses is analyzed in the framework of information transfer processes at this level. The presence of putative homeostatic, heterostatic and mnestic mechanisms in the synapse is also discussed.  相似文献   
28.
A program using a simplified method to compute estimates of binding parameters in a system with two independent classes of binding sites is presented. An iterative method is used to approximate step-by-step the two lines describing the binding activities separately, starting from a curvilinear Scatchard or Hofstee plot. This method is designed for use on microcomputers with graphic facilities and on programmable hand-held calculators.  相似文献   
29.
A Novel Synaptic Vesicle-Associated Phosphoprotein: SVAPP-120   总被引:1,自引:0,他引:1  
Generation of antibodies and direct protein sequencing were used to identify and characterize proteins associated with highly purified synaptic vesicles from rat brain. A protein doublet of low abundance of 119 and 124 kDa apparent molecular mass [synaptic vesicle-associated phosphoprotein with a molecular mass of 120 kDa (SVAPP-120)] was identified using polyclonal antibodies. SVAPP-120 was found to copurify with synaptic vesicles and to be enriched in the purified synaptic vesicle fraction to the same extent as synapsin I. Like synapsin I, SVAPP-120 is not an integral membrane protein because it was released from synaptic vesicles by high salt concentrations. This protein was demonstrated to be brain specific, and its distribution in various brain regions paralleled the distribution of synapsin I and synaptophysin. During the postnatal development of the rat cortex and cerebellum, its expression correlated with synaptogenesis. SVAPP-120 was demonstrated to be a phosphoprotein both in vivo and in vitro. It was shown to be phosphorylated on serine and to a lesser extent on threonine residues. These results provide evidence that SVAPP-120 represents a novel synaptic vesicle-associated phosphoprotein. In addition, aldolase, a glycolytic enzyme, and alpha c-adaptin, a clathrin assembly-promoting protein, were identified on purified synaptic vesicles by direct protein sequencing.  相似文献   
30.
Spinophilin is a protein phosphatase 1 (PP1)- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We report that spinophilin is phosphorylated in vitro by protein kinase A (PKA). Phosphorylation of spinophilin was stimulated by treatment of neostriatal neurons with a dopamine D1 receptor agonist or with forskolin, consistent with spinophilin being a substrate for PKA in intact cells. Using tryptic phosphopeptide mapping, site-directed mutagenesis, and microsequencing analysis, we identified two major sites of phosphorylation, Ser-94 and Ser-177, that are located within the actin-binding domain of spinophilin. Phosphorylation of spinophilin by PKA modulated the association between spinophilin and the actin cytoskeleton. Following subcellular fractionation, unphosphorylated spinophilin was enriched in the postsynaptic density, whereas a pool of phosphorylated spinophilin was found in the cytosol. F-actin co-sedimentation and overlay analysis revealed that phosphorylation of spinophilin reduced the stoichiometry of the spinophilin-actin interaction. In contrast, the ability of spinophilin to bind to PP1 remained unchanged. Taken together, our studies suggest that phosphorylation of spinophilin by PKA modulates the anchoring of the spinophilin-PP1 complex within dendritic spines, thereby likely contributing to the efficacy and plasticity of synaptic transmission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号