首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585篇
  免费   55篇
  国内免费   1篇
  641篇
  2023年   6篇
  2022年   16篇
  2021年   28篇
  2020年   13篇
  2019年   16篇
  2018年   22篇
  2017年   23篇
  2016年   33篇
  2015年   41篇
  2014年   49篇
  2013年   45篇
  2012年   62篇
  2011年   53篇
  2010年   29篇
  2009年   29篇
  2008年   40篇
  2007年   27篇
  2006年   26篇
  2005年   12篇
  2004年   14篇
  2003年   19篇
  2002年   14篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   6篇
  1993年   1篇
  1992年   2篇
  1988年   1篇
  1977年   1篇
  1973年   1篇
  1932年   1篇
  1910年   1篇
排序方式: 共有641条查询结果,搜索用时 15 毫秒
51.
Two multi-system disorders, Myotonic Dystrophies type 1 and type 2 (DM1 and DM2), are complex neuromuscular diseases caused by an accumulation of expanded, non-coding RNAs, containing repetitive CUG and CCUG elements. Similarities of these mutations suggest similar mechanisms for both diseases. The expanded CUGn and CCUGn RNAs mainly target two RNA binding proteins, MBNL1 and CUGBP1, elevating levels of CUGBP1 and reducing levels of MBNL1. These alterations change processing of RNAs that are regulated by these proteins. Whereas overall toxicity of CUGn/CCUGn RNAs on RNA homeostasis in DM cells has been proven, the mechanisms which make these RNAs toxic remain illusive. A current view is that the toxicity of RNA CUGn and CCUGn is associated exclusively with global mis-splicing in DM patients. However, a growing number of new findings show that the expansion of CUGn and CCUGn RNAs mis-regulates several additional pathways in nuclei and cytoplasm of cells from patients with DM1 and DM2. The purpose of this review is to discuss the similarities and differences in the clinical presentation and molecular genetics of both diseases. We will also discuss the complexity of the molecular abnormalities in DM1 and DM2 caused by CUG and CCUG repeats and will summarize the outcomes of the toxicity of CUG and CCUG repeats.  相似文献   
52.
2-Methoxyestradiol (2-ME), a naturally occurring mammalian metabolite of 17beta-Estradiol (E2), induces cell death in osteosarcoma cells. To further understand the molecular mechanisms of action, we have investigated cell cycle progression in 2-ME-treated human osteosarcoma (MG63, SaOS-2 and LM7 [corrected]) cells. At 5 microM, 2-ME induced growth arrest by inducing a block in cell cycle; 2-ME-treatment resulted in 2-fold increases in G1 phase cells and a decrease in S phase cells in MG63 and SaOS-2 osteosarcoma cell lines, compared to the appropriate vehicle controls. 2-ME-treatment induced a threefold increase in the G2 phase in LM7 [corrected] osteosarcoma cells. The results demonstrated steroid specificity, as the tumorigenic metabolite, 16alpha-hydroxyestradiol (16-OHE), did not have any effect on cell cycle progression in osteosarcoma cells. The cell cycle arrest coincided with an increase in expression of the cell cycle markers p21, p27 and p53 proteins in 2-ME-treated osteosarcoma cells. Also, MG63 cells, transiently transfected with cDNA for a 'loss of function mutant' RNA-dependent protein kinase (PKR) protein, were resistant to 2-ME-induced cell cycle arrest. These results suggest that 2-ME works in concert with factors regulating cell cycle progression, and cell cycle arrest precedes cell death in 2-ME-treated osteosarcoma cells.  相似文献   
53.
  相似文献   
54.

Introduction

Mass vaccinations are a main strategy in the deployment of oral cholera vaccines. Campaigns avoid giving vaccine to pregnant women because of the absence of safety data of the killed whole-cell oral cholera (rBS-WC) vaccine. Balancing this concern is the known higher risk of cholera and of complications of pregnancy should cholera occur in these women, as well as the lack of expected adverse events from a killed oral bacterial vaccine.

Methodology/Principal Findings

From January to February 2009, a mass rBS-WC vaccination campaign of persons over two years of age was conducted in an urban and a rural area (population 51,151) in Zanzibar. Pregnant women were advised not to participate in the campaign. More than nine months after the last dose of the vaccine was administered, we visited all women between 15 and 50 years of age living in the study area. The outcome of pregnancies that were inadvertently exposed to at least one oral cholera vaccine dose and those that were not exposed was evaluated. 13,736 (94%) of the target women in the study site were interviewed. 1,151 (79%) of the 1,453 deliveries in 2009 occurred during the period when foetal exposure to the vaccine could have occurred. 955 (83%) out of these 1,151 mothers had not been vaccinated; the remaining 196 (17%) mothers had received at least one dose of the oral cholera vaccine. There were no statistically significant differences in the odds ratios for birth outcomes among the exposed and unexposed pregnancies.

Conclusions/Significance

We found no statistically significant evidence of a harmful effect of gestational exposure to the rBS-WC vaccine. These findings, along with the absence of a rational basis for expecting a risk from this killed oral bacterial vaccine, are reassuring but the study had insufficient power to detect infrequent events.

Trial Registration

ClinicalTrials.gov NCT00709410  相似文献   
55.
RAC/ROP GTPases coordinate actin dynamics and membrane traffic during polar plant cell expansion. In tobacco (Nicotiana tabacum), pollen tube tip growth is controlled by the RAC/ROP GTPase RAC5, which specifically accumulates at the apical plasma membrane. Here, we describe the functional characterization of RISAP, a RAC5 effector identified by yeast (Saccharomyces cerevisiae) two-hybrid screening. RISAP belongs to a family of putative myosin receptors containing a domain of unknown function 593 (DUF593) and binds via its DUF593 to the globular tail domain of a tobacco pollen tube myosin XI. It also interacts with F-actin and is associated with a subapical trans-Golgi network (TGN) compartment, whose cytoplasmic position at the pollen tube tip is maintained by the actin cytoskeleton. In this TGN compartment, apical secretion and endocytic membrane recycling pathways required for tip growth appear to converge. RISAP overexpression interferes with apical membrane traffic and blocks tip growth. RAC5 constitutively binds to the N terminus of RISAP and interacts in an activation-dependent manner with the C-terminal half of this protein. In pollen tubes, interaction between RAC5 and RISAP is detectable at the subapical TGN compartment. We present a model of RISAP regulation and function that integrates all these findings.  相似文献   
56.
57.
Over the last three decades, climate abnormalities have been reported to be involved in biodiversity decline by affecting population dynamics. A growing number of studies have shown that the North Atlantic Oscillation (NAO) influences the demographic parameters of a wide range of plant and animal taxa in different ways. Life history theory could help to understand these different demographic responses to the NAO. Indeed, theory states that the impact of weather variation on a species’ demographic traits should depend on its position along the fast–slow continuum. In particular, it is expected that NAO would have a higher impact on recruitment than on adult survival in slow species, while the opposite pattern is expected occur in fast species. To test these predictions, we used long‐term capture–recapture datasets (more than 15,000 individuals marked from 1965 to 2015) on different surveyed populations of three amphibian species in Western Europe: Triturus cristatus, Bombina variegata, and Salamandra salamandra. Despite substantial intraspecific variation, our study revealed that these three species differ in their position on a slow–fast gradient of pace of life. Our results also suggest that the differences in life history tactics influence amphibian responses to NAO fluctuations: Adult survival was most affected by the NAO in the species with the fastest pace of life (Tcristatus), whereas recruitment was most impacted in species with a slower pace of life (Bvariegata and Ssalamandra). In the context of climate change, our findings suggest that the capacity of organisms to deal with future changes in NAO values could be closely linked to their position on the fast–slow continuum.  相似文献   
58.
Cationic peptides, known to disrupt bacterial membranes, are being developed as promising agents for therapeutic intervention against infectious disease. In the present study, we investigate structure-activity relationships in the bacterial membrane disruptor betapep-25, a peptide 33-mer. For insight into which amino acid residues are functionally important, we synthesized alanine-scanning variants of betapep-25 and assessed their ability to kill bacteria (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) and to neutralize LPS (lipopolysaccharide). Activity profiles were found to vary with the bacterial strain examined. Specific cationic and smaller hydrophobic alkyl residues were crucial to optimal bactericidal activity against the Gram-negative bacteria, whereas larger hydrophobic and cationic residues mediated optimal activity against Gram-positive Staph. aureus. Lysine-substituted norleucine (n-butyl group) variants demonstrated that both charge and alkyl chain length mediate optimal activity. In terms of LPS neutralization, activity profiles were essentially the same against four species of LPS (E. coli 055 and 0111, Salmonella enterica serotype Typhimurium and Klebsiella pneumoniae), and different for two others (Ps. aeruginosa and Serratia marcescens), with specific hydrophobic, cationic and, surprisingly, anionic residues being functionally important. Furthermore, disulfide-bridged analogues demonstrated that an anti parallel beta-sheet structure is the bioactive conformation of betapep-25 in terms of its bactericidal, but not LPS endotoxin neutralizing, activity. Moreover, betapep-25 variants, like the parent peptide, do not lyse eukaryotic cells. This research contributes to the development and design of novel antibiotics.  相似文献   
59.
Determining the biological function of newly discovered gene products requires the development of novel functional approaches. To facilitate this task, recent developments in proteomics include small molecular probes that target proteolytic enzyme families including serine, threonine, and cysteine proteases. For the families of ubiquitin (Ub) and ubiquitin-like (UBL)-specific proteases, such tools were lacking until recently. Here, we review the advances made in the development of protein-based active site-directed probes that target proteases specific for ubiquitin and ubiquitin-like proteins. Such probes were applied successfully to discover and characterize novel Ub/UBL-specific proteases. Ub/UBL processing and deconjugation are performed by a diverse set of proteases belonging to several different enzyme families, including members of the ovarian tumor domain (OTU) protease family. A further definition of this family of enzymes will benefit from a directed chemical proteomics approach. Some of the Ub/UBL-specific proteases react with multiple Ub/UBLs and members of the same protease family can recognize multiple Ub/UBLs, underscoring the need for tools that appropriately address enzyme specificity.  相似文献   
60.
Mitochondrial fusion and fission play important roles for mitochondrial morphology and function. We identified Mdm30 as a novel component required for maintenance of fusion-competent mitochondria in yeast. The Mdm30 sequence contains an F-box motif that is commonly found in subunits of Skp1-Cdc53-F-box protein ubiquitin ligases. A fraction of Mdm30 is associated with mitochondria. Cells lacking Mdm30 contain highly aggregated or fragmented mitochondria instead of the branched tubular network seen in wild-type cells. Deltamdm30 cells lose mitochondrial DNA at elevated temperature and fail to fuse mitochondria in zygotes at all temperatures. These defects are rescued by deletion of DNM1, a gene encoding a component of the mitochondrial division machinery. The protein level of Fzo1, a key component of the mitochondrial fusion machinery, is regulated by Mdm30. Elevated Fzo1 levels in cells lacking Mdm30 or in cells overexpressing Fzo1 from a heterologous promoter induce mitochondrial aggregation in a similar manner. Our results suggest that Mdm30 controls mitochondrial shape by regulating the steady-state level of Fzo1 and point to a connection of the ubiquitin/26S proteasome system and mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号