全文获取类型
收费全文 | 629篇 |
免费 | 70篇 |
国内免费 | 1篇 |
专业分类
700篇 |
出版年
2023年 | 6篇 |
2022年 | 16篇 |
2021年 | 30篇 |
2020年 | 13篇 |
2019年 | 17篇 |
2018年 | 23篇 |
2017年 | 25篇 |
2016年 | 36篇 |
2015年 | 42篇 |
2014年 | 49篇 |
2013年 | 49篇 |
2012年 | 62篇 |
2011年 | 56篇 |
2010年 | 32篇 |
2009年 | 30篇 |
2008年 | 43篇 |
2007年 | 29篇 |
2006年 | 26篇 |
2005年 | 12篇 |
2004年 | 15篇 |
2003年 | 19篇 |
2002年 | 16篇 |
2001年 | 6篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 6篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1973年 | 2篇 |
1972年 | 2篇 |
1971年 | 1篇 |
1965年 | 1篇 |
1963年 | 2篇 |
1932年 | 1篇 |
1930年 | 1篇 |
1928年 | 1篇 |
1925年 | 1篇 |
1910年 | 1篇 |
排序方式: 共有700条查询结果,搜索用时 15 毫秒
91.
A Murine Homologue of the Drosophila brainiac Gene Shows Homology to Glycosyltransferases and Is Required for Preimplantation Development of the Mouse 下载免费PDF全文
Benedikt Vollrath Kevin J. Fitzgerald Philip Leder 《Molecular and cellular biology》2001,21(16):5688-5697
The neurogenic gene brainiac was first isolated in Drosophila melanogaster, where it interacts genetically with members of the Notch signaling cascade. We have isolated a murine homologue of the Drosophila brainiac gene and delineated its highly specific expression pattern during development and adult life. We find particularly strong expression in the developing central nervous system, in the developing retina, and in the adult hippocampus. Targeted deletion of mouse Brainiac 1 expression leads to embryonic lethality prior to implantation. Null embryos can be recovered as blastocysts but do not appear to implant, indicating that mouse Brainiac 1, likely a glycosyltransferase, is crucial for very early development of the mouse embryo. 相似文献
92.
Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast 总被引:4,自引:0,他引:4 下载免费PDF全文
Dürr M Escobar-Henriques M Merz S Geimer S Langer T Westermann B 《Molecular biology of the cell》2006,17(9):3745-3755
Mitochondria constantly fuse and divide to adapt organellar morphology to the cell's ever-changing physiological conditions. Little is known about the molecular mechanisms regulating mitochondrial dynamics. F-box proteins are subunits of both Skp1-Cullin-F-box (SCF) ubiquitin ligases and non-SCF complexes that regulate a large number of cellular processes. Here, we analyzed the roles of two yeast F-box proteins, Mfb1 and Mdm30, in mitochondrial dynamics. Mfb1 is a novel mitochondria-associated F-box protein. Mitochondria in mutants lacking Mfb1 are fusion competent, but they form aberrant aggregates of interconnected tubules. In contrast, mitochondria in mutants lacking Mdm30 are highly fragmented due to a defect in mitochondrial fusion. Fragmented mitochondria are docked but nonfused in Deltamdm30 cells. Mitochondrial fusion is also blocked during sporulation of homozygous diploid mutants lacking Mdm30, leading to a mitochondrial inheritance defect in ascospores. Mfb1 and Mdm30 exert nonredundant functions and likely have different target proteins. Because defects in F-box protein mutants could not be mimicked by depletion of SCF complex and proteasome core subunits, additional yet unknown factors are likely involved in regulating mitochondrial dynamics. We propose that mitochondria-associated F-box proteins Mfb1 and Mdm30 are key components of a complex machinery that regulates mitochondrial dynamics throughout yeast's entire life cycle. 相似文献
93.
Claudia Siegl Patricia Hamminger Herbert Jank Uwe Ahting Benedikt Bader Adrian Danek Allison Gregory Monika Hartig Susan Hayflick Andreas Hermann Holger Prokisch Esther M. Sammler Zuhal Yapici Rainer Prohaska Ulrich Salzer 《PloS one》2013,8(10)
Neuroacanthocytosis (NA) refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc), McLeod syndrome (MLS), Huntington’s disease-like 2 (HDL2) and pantothenate kinase associated neurodegeneration (PKAN), that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation), associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10%) and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN) red cells but not in patient cells without shape abnormalities. These data suggest an “acanthocytic state” of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration. 相似文献
94.
95.
96.
Dirk Raiser Stephanie Mildner Benedikt Ifland Mohsen Sotoudeh Peter Blöchl Simone Techert Christian Jooss 《Liver Transplantation》2017,7(12)
Understanding and controlling the relaxation process of optically excited charge carriers in solids with strong correlations is of great interest in the quest for new strategies to exploit solar energy. Usually, optically excited electrons in a solid thermalize rapidly on a femtosecond to picosecond timescale due to interactions with other electrons and phonons. New mechanisms to slow down thermalization will thus be of great significance for efficient light energy conversion, e.g., in photovoltaic devices. Ultrafast optical pump–probe experiments in the manganite Pr0.65Ca0.35MnO3, a photovoltaic, thermoelectric, and electrocatalytic material with strong polaronic correlations, reveal an ultraslow recombination dynamics on a nanosecond‐time scale. The nature of long living excitations is further elucidated by photovoltaic measurements, showing the presence of photodiffusion of excited electron–hole polaron pairs. Theoretical considerations suggest that the excited charge carriers are trapped in a hot polaron state. Escape from this state is possible via a slow dipole‐forbidden recombination process or via rare thermal fluctuations toward a conical intersection followed by a radiation‐less decay. The strong correlation between the excited polaron and the octahedral dynamics of its environment appears to be substantial for stabilizing the hot polaron. 相似文献
97.
Benedikt Weber Manuel Hora Pamina Kazman Christoph Göbl Carlo Camilloni Bernd Reif Johannes Buchner 《Journal of molecular biology》2018,430(24):4925-4940
The antibody light chain (LC) consists of two domains and is essential for antigen binding in mature immunoglobulins. The two domains are connected by a highly conserved linker that comprises the structurally important Arg108 residue. In antibody light chain (AL) amyloidosis, a severe protein amyloid disease, the LC and its N-terminal variable domain (VL) convert to fibrils deposited in the tissues causing organ failure. Understanding the factors shaping the architecture of the LC is important for basic science, biotechnology and for deciphering the principles that lead to fibril formation. In this study, we examined the structure and properties of LC variants with a mutated or extended linker. We show that under destabilizing conditions, the linker modulates the amyloidogenicity of the LC. The fibril formation propensity of LC linker variants and their susceptibility to proteolysis directly correlate implying an interplay between the two LC domains. Using NMR and residual dipolar coupling-based simulations, we found that the linker residue Arg108 is a key factor regulating the relative orientation of the VL and CL domains, keeping them in a bent and dense, but still flexible conformation. Thus, inter-domain contacts and the relative orientation of VL and CL to each other are of major importance for maintaining the structural integrity of the full-length LC. 相似文献
98.
Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production 总被引:3,自引:0,他引:3
Metabolic engineering in microbes could be used to produce large amounts of valuable metabolites that are difficult to extract from their natural sources and too expensive or complex to produce by chemical synthesis. As a step towards the production of Taxol in the yeast Saccharomyces cerevisiae, we introduced heterologous genes encoding biosynthetic enzymes from the early part of the taxoid biosynthetic pathway, isoprenoid pathway, as well as a regulatory factor to inhibit competitive pathways, and studied their impact on taxadiene synthesis. Expression of Taxus chinensis taxadiene synthase alone did not increase taxadiene levels because of insufficient levels of the universal diterpenoid precursor geranylgeranyl diphosphate. Coexpression of T. chinensis taxadiene synthase and geranylgeranyl diphosphate synthase failed to increase levels, probably due to steroid-based negative feedback, so we also expressed a truncated version of 3-hydroxyl-3-methylglutaryl-CoA reductase (HMG-CoA reductase) isoenzyme 1 that is not subject to feedback inhibition and a mutant regulatory protein, UPC2-1, to allow steroid uptake under aerobic conditions, resulting in a 50% increase in taxadiene. Finally, we replaced the T. chinensis geranylgeranyl diphosphate synthase with its counterpart from Sulfolobus acidocaldarius, which does not compete with steroid synthesis, and codon optimized the T. chinensis taxadiene synthase gene to ensure high-level expression, resulting in a 40-fold increase in taxadiene to 8.7±0.85 mg/l as well as significant amounts of geranylgeraniol (33.1±5.6 mg/l), suggesting taxadiene levels could be increased even further. This is the first demonstration of such enhanced taxadiene levels in yeast and offers the prospect for Taxol production in recombinant microbes. 相似文献
99.
100.
Wright C Sibani S Trudgian D Fischer R Kessler B LaBaer J Bowness P 《Molecular & cellular proteomics : MCP》2012,11(2):M9.00384
Ankylosing spondylitis (AS) is a common, inflammatory rheumatic disease that primarily affects the axial skeleton and is associated with sacroiliitis, uveitis, and enthesitis. Unlike other autoimmune rheumatic diseases, such as rheumatoid arthritis or systemic lupus erythematosus, autoantibodies have not yet been reported to be a feature of AS. We therefore wished to determine whether plasma from patients with AS contained autoantibodies and, if so, characterize and quantify this response in comparison to patients with rheumatoid arthritis (RA) and healthy controls. Two high density nucleic acid programmable protein arrays expressing a total of 3498 proteins were screened with plasma from 25 patients with AS, 17 with RA, and 25 healthy controls. Autoantigens identified were subjected to Ingenuity Pathway Analysis to determine the patterns of signaling cascades or tissue origin. 44% of patients with ankylosing spondylitis demonstrated a broad autoantibody response, as compared with 33% of patients with RA and only 8% of healthy controls. Individuals with AS demonstrated autoantibody responses to shared autoantigens, and 60% of autoantigens identified in the AS cohort were restricted to that group. The autoantibody responses in the AS patients were targeted toward connective, skeletal, and muscular tissue, unlike those of RA patients or healthy controls. Thus, patients with AS show evidence of systemic humoral autoimmunity and multispecific autoantibody production. Nucleic acid programmable protein arrays constitute a powerful tool to study autoimmune diseases. 相似文献