首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   63篇
  国内免费   3篇
  783篇
  2024年   1篇
  2023年   7篇
  2022年   20篇
  2021年   35篇
  2020年   19篇
  2019年   16篇
  2018年   30篇
  2017年   26篇
  2016年   42篇
  2015年   54篇
  2014年   56篇
  2013年   53篇
  2012年   68篇
  2011年   62篇
  2010年   36篇
  2009年   29篇
  2008年   45篇
  2007年   33篇
  2006年   29篇
  2005年   14篇
  2004年   16篇
  2003年   23篇
  2002年   17篇
  2001年   4篇
  1999年   3篇
  1998年   1篇
  1997年   6篇
  1996年   1篇
  1995年   10篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1984年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1966年   1篇
  1932年   1篇
  1910年   1篇
排序方式: 共有783条查询结果,搜索用时 15 毫秒
91.
We have identified a large multigenerational Austrian family displaying a novel form of X-linked recessive myopathy. Affected individuals develop an adult-onset scapulo-axio-peroneal myopathy with bent-spine syndrome characterized by specific atrophy of postural muscles along with pseudoathleticism or hypertrophy and cardiac involvement. Known X-linked myopathies were excluded by simple-tandem-repeat polymorphism (STRP) and single-nucleotide polymorphism (SNP) analysis, direct gene sequencing, and immunohistochemical analysis. STRP analysis revealed significant linkage at Xq25-q27.1. Haplotype analysis based on SNP microarray data from selected family members confirmed this linkage region on the distal arm of the X chromosome, thereby narrowing down the critical interval to 12 Mb. Sequencing of functional candidate genes led to the identification of a missense mutation within the four and a half LIM domain 1 gene (FHL1), which putatively disrupts the fourth LIM domain of the protein. Mutation screening of FHL1 in a myopathy family from the UK exhibiting an almost identical phenotype revealed a 3 bp insertion mutation within the second LIM domain. FHL1 on Xq26.3 is highly expressed in skeletal and cardiac muscles. Western-blot analysis of muscle biopsies showed a marked decrease in protein expression of FHL1 in patients, in concordance with the genetic data. In summary, we have to our knowledge characterized a new disorder, X-linked myopathy with postural muscle atrophy (XMPMA), and identified FHL1 as the causative gene. This is the first FHL protein to be identified in conjunction with a human genetic disorder and further supports the role of FHL proteins in the development and maintenance of muscle tissue. Mutation screening of FHL1 should be considered for patients with uncharacterized myopathies and cardiomyopathies.  相似文献   
92.
The neurogenic gene brainiac was first isolated in Drosophila melanogaster, where it interacts genetically with members of the Notch signaling cascade. We have isolated a murine homologue of the Drosophila brainiac gene and delineated its highly specific expression pattern during development and adult life. We find particularly strong expression in the developing central nervous system, in the developing retina, and in the adult hippocampus. Targeted deletion of mouse Brainiac 1 expression leads to embryonic lethality prior to implantation. Null embryos can be recovered as blastocysts but do not appear to implant, indicating that mouse Brainiac 1, likely a glycosyltransferase, is crucial for very early development of the mouse embryo.  相似文献   
93.
Thirty male guinea pigs (350–600 g) were fasted for 48–72 hours while receiving lactated Ringers solution through a catheter in the internal jugular vein which had been implanted just before the start of the experiment under halothane anesthesia. Ten of the animals also received leucine, isoleucine, and valine in their infusions at a level approximating their usual daily requirement for these amino acids. Eight of the animals received glucose in their infusion at a level which was isocaloric to the branched-chain amino acid infusion. There was a 37% improvement (p < .01) in nitrogen balance in the animals supplemented with the branched-chain amino acids compared to the completely fasted animals. Nitrogen balance was increased by 27% (p < .05) in the amino acid treated animals relative to the glucose treated group. These results may relate to the specific regulatory role of leucine, isoleucine, and valine on muscle protein turnover. In addition, the preferential oxidation of these amino acids in muscle may be a limiting factor in the overall reutilization of essential amino acids during early fasting.  相似文献   
94.
Subacute sclerosing panencephalitis (SSPE) is a fatal long-term complication of measles infection. We performed an estimation of the total number of SSPE cases in Germany for the period 2003 to 2009 and calculated the risk of SSPE after an acute measles infection. SSPE cases were collected from the Surveillance Unit for Rare Paediatric Diseases in Germany and the Institute of Virology and Immunobiology at the University of Würzburg. The total number of SSPE cases was estimated by capture-recapture analysis. For the period 2003 to 2009, 31 children with SSPE who were treated at German hospitals were identified. The capture-recapture estimate was 39 cases (95% confidence interval: 29.2–48.0). The risk of developing SSPE for children contracting measles infection below 5 years of age was calculated as 1∶1700 to 1∶3300. This risk is in the same order of magnitude as the risk of a fatal acute measles infection.  相似文献   
95.
  相似文献   
96.
97.
The voltage‐gated sodium channel NaV1.7 plays a critical role in pain pathways. We generated an epitope‐tagged NaV1.7 mouse that showed normal pain behaviours to identify channel‐interacting proteins. Analysis of NaV1.7 complexes affinity‐purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo. The sodium channel β3 (Scn3b), rather than the β1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing‐response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel NaV1.7 protein interactors including membrane‐trafficking protein synaptotagmin‐2 (Syt2), L‐type amino acid transporter 1 (Lat1) and transmembrane P24‐trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co‐immunoprecipitation (Co‐IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein‐regulated inducer of neurite outgrowth (Gprin1), an opioid receptor‐binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope‐tagged mouse should provide useful insights into the many functions now associated with the NaV1.7 channel.  相似文献   
98.
Cancer genomes often harbor hundreds of molecular aberrations. Such genetic variants can be drivers or passengers of tumorigenesis and create vulnerabilities for potential therapeutic exploitation. To identify genotype‐dependent vulnerabilities, forward genetic screens in different genetic backgrounds have been conducted. We devised MINGLE, a computational framework to integrate CRISPR/Cas9 screens originating from different libraries building on approaches pioneered for genetic network discovery in model organisms. We applied this method to integrate and analyze data from 85 CRISPR/Cas9 screens in human cancer cells combining functional data with information on genetic variants to explore more than 2.1 million gene‐background relationships. In addition to known dependencies, we identified new genotype‐specific vulnerabilities of cancer cells. Experimental validation of predicted vulnerabilities identified GANAB and PRKCSH as new positive regulators of Wnt/β‐catenin signaling. By clustering genes with similar genetic interaction profiles, we drew the largest genetic network in cancer cells to date. Our scalable approach highlights how diverse genetic screens can be integrated to systematically build informative maps of genetic interactions in cancer, which can grow dynamically as more data are included.  相似文献   
99.
Resistance against radio(chemo)therapy-induced cell death is a major determinant of oncological treatment failure and remains a perpetual clinical challenge. The underlying mechanisms are manifold and demand for comprehensive, cancer entity- and subtype-specific examination. In the present study, resistance against radiotherapy was systematically assessed in a panel of human head-and-neck squamous cell carcinoma (HNSCC) cell lines and xenotransplants derived thereof with the overarching aim to extract master regulators and potential candidates for mechanism-based pharmacological targeting. Clonogenic survival data were integrated with molecular and functional data on DNA damage repair and different cell fate decisions. A positive correlation between radioresistance and early induction of HNSCC cell senescence accompanied by NF-κB-dependent production of distinct senescence-associated cytokines, particularly ligands of the CXCR2 chemokine receptor, was identified. Time-lapse microscopy and medium transfer experiments disclosed the non-cell autonomous, paracrine nature of these mechanisms, and pharmacological interference with senescence-associated cytokine production by the NF-κB inhibitor metformin significantly improved radiotherapeutic performance in vitro and in vivo. With regard to clinical relevance, retrospective analyses of TCGA HNSCC data and an in-house HNSCC cohort revealed that elevated expression of CXCR2 and/or its ligands are associated with impaired treatment outcome. Collectively, our study identifies radiation-induced tumor cell senescence and the NF-κB-dependent production of distinct senescence-associated cytokines as critical drivers of radioresistance in HNSCC whose therapeutic targeting in the context of multi-modality treatment approaches should be further examined and may be of particular interest for the subgroup of patients with elevated expression of the CXCR2/ligand axis.Subject terms: Radiotherapy, Head and neck cancer, Senescence, Tumour heterogeneity

  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号