首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   714篇
  免费   63篇
  国内免费   3篇
  2024年   1篇
  2023年   4篇
  2022年   20篇
  2021年   35篇
  2020年   19篇
  2019年   16篇
  2018年   30篇
  2017年   26篇
  2016年   42篇
  2015年   54篇
  2014年   56篇
  2013年   53篇
  2012年   68篇
  2011年   62篇
  2010年   36篇
  2009年   29篇
  2008年   45篇
  2007年   33篇
  2006年   29篇
  2005年   14篇
  2004年   16篇
  2003年   23篇
  2002年   17篇
  2001年   4篇
  1999年   3篇
  1998年   1篇
  1997年   6篇
  1996年   1篇
  1995年   10篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1984年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1966年   1篇
  1932年   1篇
  1910年   1篇
排序方式: 共有780条查询结果,搜索用时 31 毫秒
31.
Determining the biological function of newly discovered gene products requires the development of novel functional approaches. To facilitate this task, recent developments in proteomics include small molecular probes that target proteolytic enzyme families including serine, threonine, and cysteine proteases. For the families of ubiquitin (Ub) and ubiquitin-like (UBL)-specific proteases, such tools were lacking until recently. Here, we review the advances made in the development of protein-based active site-directed probes that target proteases specific for ubiquitin and ubiquitin-like proteins. Such probes were applied successfully to discover and characterize novel Ub/UBL-specific proteases. Ub/UBL processing and deconjugation are performed by a diverse set of proteases belonging to several different enzyme families, including members of the ovarian tumor domain (OTU) protease family. A further definition of this family of enzymes will benefit from a directed chemical proteomics approach. Some of the Ub/UBL-specific proteases react with multiple Ub/UBLs and members of the same protease family can recognize multiple Ub/UBLs, underscoring the need for tools that appropriately address enzyme specificity.  相似文献   
32.
Sexual selection has traditionally been investigated assuming that male quality is as skewed as patterns of male reproductive success can sometimes be. Recently, female choice has been investigated under the model of genetic compatibility, which assumes that each individual female has her own 'best' mate and there is no overall optimal choice for all females. We investigated female mate choice in the newt species Triturus alpestris, a member of a genus where female choice has been investigated only within the context of the optimal male (female choice for condition-dependent traits). We provided females with two males that differed in one condition-dependent trait (body size) and overall genetic composition. Both male body size and female body size did not influence paternity, but the degree of genetic relatedness between females and potential mates did. Two components of fitness (fecundity and hatching success) did not differ between singly and multiply sired clutches, indicating that females do not employ polyandry as a means of increasing offspring fitness through genetic bet-hedging. Instead, we hypothesize that females may mate initially for fertility assurance, but prefer less-related males as the most genetically compatible mates.  相似文献   
33.
Mitochondrial distribution and morphology depend on MDM33, a Saccharomyces cerevisiae gene encoding a novel protein of the mitochondrial inner membrane. Cells lacking Mdm33 contain ring-shaped, mostly interconnected mitochondria, which are able to form large hollow spheres. On the ultrastructural level, these aberrant organelles display extremely elongated stretches of outer and inner membranes enclosing a very narrow matrix space. Dilated parts of Delta mdm33 mitochondria contain well-developed cristae. Overexpression of Mdm33 leads to growth arrest, aggregation of mitochondria, and generation of aberrant inner membrane structures, including septa, inner membrane fragments, and loss of inner membrane cristae. The MDM33 gene is required for the formation of net-like mitochondria in mutants lacking components of the outer membrane fission machinery, and mitochondrial fusion is required for the formation of extended ring-like mitochondria in cells lacking the MDM33 gene. The Mdm33 protein assembles into an oligomeric complex in the inner membrane where it performs homotypic protein-protein interactions. Our results indicate that Mdm33 plays a distinct role in the mitochondrial inner membrane to control mitochondrial morphology. We propose that Mdm33 is involved in fission of the mitochondrial inner membrane.  相似文献   
34.
Myotonic dystrophy (DM), the most common form of muscular dystrophy in adults, can be caused by a mutation on either chromosome 19 (DM1) or 3 (DM2). In 2001, we demonstrated that DM2 is caused by a CCTG expansion in intron 1 of the zinc finger protein 9 (ZNF9) gene. To investigate the ancestral origins of the DM2 expansion, we compared haplotypes for 71 families with genetically confirmed DM2, using 19 short tandem repeat markers that we developed that flank the repeat tract. All of the families are white, with the majority of Northern European/German descent and a single family from Afghanistan. Several conserved haplotypes spanning >700 kb appear to converge into a single haplotype near the repeat tract. The common interval that is shared by all families with DM2 immediately flanks the repeat, extending up to 216 kb telomeric and 119 kb centromeric of the CCTG expansion. The DM2 repeat tract contains the complex repeat motif (TG)(n)(TCTG)(n)(CCTG)(n). The CCTG portion of the repeat tract is interrupted on normal alleles, but, as in other expansion disorders, these interruptions are lost on affected alleles. We examined haplotypes of 228 control chromosomes and identified a potential premutation allele with an uninterrupted (CCTG)(20) on a haplotype that was identical to the most common affected haplotype. Our data suggest that the predominant Northern European ancestry of families with DM2 resulted from a common founder and that the loss of interruptions within the CCTG portion of the repeat tract may predispose alleles to further expansion. To gain insight into possible function of the repeat tract, we looked for evolutionary conservation. The complex repeat motif and flanking sequences within intron 1 are conserved among human, chimpanzee, gorilla, mouse, and rat, suggesting a conserved biological function.  相似文献   
35.
As fibroblasts near senescence, their responsiveness to external signals diminishes. This well-documented phenomenon likely underlies physiological deterioration and limited tissue regeneration in aging individuals. Understanding the underlying molecular mechanisms would provide opportunities to ameliorate these situations. A key stimulus for human dermal fibroblasts are ligands for the epidermal growth factor receptor (EGFR). We have shown earlier that EGFR expression decreases by about half in near senescent fibroblasts (Shiraha et al., 2000, J. Biol. Chem. 275 (25), 19343-19351). However, as the cell responses are nearly absent near senescence, other aging-related signal attenuation changes must also occur. Herein, we show that EGFR signaling as determined by receptor autophosphorylation is diminished over 80%, with a corresponding decrease in the phosphorylation of the immediate postreceptor adaptor Shc. Interestingly, we found that this was due at least in part to increased dephosphorylation of EGFR. The global cell phosphotyrosine phosphatase activity increased some threefold in near senescent cells. An initial survey of EGFR-associated protein tyrosine phosphatases (PTPases) showed that SHP-1 (PTPIC, HCP, SHPTP-1) and PTPIB levels are increased in parallel in these cells. Concomitantly, we also discovered an increase in expression of receptor protein tyrosine phosphatase alpha (RPTPalpha). Last, inhibition of protein tyrosine phosphatases by sodium orthovanadate in near senescent cells resulted in increased EGFR phosphorylation. These data support a model in which, near senescence, dermal fibroblasts become resistant to EGFR-mediated stimuli by a combination of receptor downregulation and increased signal attenuation.  相似文献   
36.
The Hin recombinase specifically recognizes its DNA-binding site by means of both major and minor groove interactions. A previous X-ray structure, together with new structures of the Hin DNA-binding domain bound to a recombination half-site that were solved as part of the present study, have revealed that two ordered water molecules are present within the major groove interface. In this report, we test the importance of these waters directly by X-ray crystal structure analysis of complexes with four mutant DNA sequences. These structures, combined with their Hin-binding properties, provide strong support for the critical importance of one of the intermediate waters. A lesser but demonstrable role is ascribed to the second water molecule. The mutant structures also illustrate the prominent roles of thymine methyls both in stabilizing intermediate waters and in interfering with water or amino acid side chain interactions with DNA.  相似文献   
37.
Westermann B 《EMBO reports》2002,3(6):527-531
Fusion is essential for mitochondrial function in a great variety of eukaryotic cell types. Yeast cells defective in mitohondrial fusion are respiration-deficient, human cells use complementation of fused mitochondria as a defence against the accumulation of oxidative damage during cellular aging and fusion is required to build an intracellular mitochondrial continuum that allows the dissipation of energy in the cell. Moreover, developmental processes such as spermatogenesis in Drosophila require regulated mitochondrial fusion. Some of the molecular mediators of mitochondrial membrane fusion have been identified in recent years. An evolutionarily conserved large GTPase in the outer membrane is essential for mitochondrial fusion, and genetic screens in yeast are revealing an increasing number of additional important genes. Mechanistic studies have provided the first insights into how the problem of faithfully fusing a double membrane-bounded organelle in a coordinated manner is solved.  相似文献   
38.
The evidence for amphibian population declines is based on count data that were not adjusted for detection probabilities. Such data are not reliable even when collected using standard methods. The formula C = Np (where C is a count, N the true parameter value, and p is a detection probability) relates count data to demography, population size, or distributions. With unadjusted count data, one assumes a linear relationship between C and N and that p is constant. These assumptions are unlikely to be met in studies of amphibian populations. Amphibian population data should be based on methods that account for detection probabilities.  相似文献   
39.
Mitochondrial fusion and fission play important roles for mitochondrial morphology and function. We identified Mdm30 as a novel component required for maintenance of fusion-competent mitochondria in yeast. The Mdm30 sequence contains an F-box motif that is commonly found in subunits of Skp1-Cdc53-F-box protein ubiquitin ligases. A fraction of Mdm30 is associated with mitochondria. Cells lacking Mdm30 contain highly aggregated or fragmented mitochondria instead of the branched tubular network seen in wild-type cells. Deltamdm30 cells lose mitochondrial DNA at elevated temperature and fail to fuse mitochondria in zygotes at all temperatures. These defects are rescued by deletion of DNM1, a gene encoding a component of the mitochondrial division machinery. The protein level of Fzo1, a key component of the mitochondrial fusion machinery, is regulated by Mdm30. Elevated Fzo1 levels in cells lacking Mdm30 or in cells overexpressing Fzo1 from a heterologous promoter induce mitochondrial aggregation in a similar manner. Our results suggest that Mdm30 controls mitochondrial shape by regulating the steady-state level of Fzo1 and point to a connection of the ubiquitin/26S proteasome system and mitochondria.  相似文献   
40.

Background

Sepsis is a global burden and the primary cause of death in intensive care units worldwide. The pathophysiological changes induced by the host’s systemic inflammatory response to infection are not yet fully understood. During sepsis, the immune system is confronted with a variety of factors, which are integrated within the individual cells and result in changes of their basal state of responsiveness. Epigenetic mechanisms like histone modifications are known to participate in the control of immune reactions, but so far the situation during sepsis is unknown.

Methods and Findings

In a pilot approach, we performed combined chromatin immunoprecipitation followed by high-throughput sequencing to assess the genome-wide distribution of the chromatin modifications histone 3 lysine 4 and 27 trimethylation and lysine 9 acetylation in monocytes isolated from healthy donors (n = 4) and patients with sepsis (n = 2). Despite different underlying causes for sepsis, a comparison over promoter regions shows a high correlation between the patients for all chromatin marks. These findings hold true also when comparing patients to healthy controls. Despite the global similarity, differential analysis reveals a set of distinct promoters with significant enrichment or depletion of histone marks. Further analysis of overrepresented GO terms show an enrichment of genes involved in immune function. To the most prominent ones belong different members of the HLA family located within the MHC cluster together with the gene coding for the major regulator of this locus—CIITA.

Conclusions

We are able to show for the first time that sepsis in humans induces selective and precise changes of chromatin modifications in distinct promoter regions of immunologically relevant genes, shedding light on basal regulatory mechanisms that might be contributing to the functional changes occurring in monocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号