首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   714篇
  免费   63篇
  国内免费   3篇
  2024年   1篇
  2023年   4篇
  2022年   20篇
  2021年   35篇
  2020年   19篇
  2019年   16篇
  2018年   30篇
  2017年   26篇
  2016年   42篇
  2015年   54篇
  2014年   56篇
  2013年   53篇
  2012年   68篇
  2011年   62篇
  2010年   36篇
  2009年   29篇
  2008年   45篇
  2007年   33篇
  2006年   29篇
  2005年   14篇
  2004年   16篇
  2003年   23篇
  2002年   17篇
  2001年   4篇
  1999年   3篇
  1998年   1篇
  1997年   6篇
  1996年   1篇
  1995年   10篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1984年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1966年   1篇
  1932年   1篇
  1910年   1篇
排序方式: 共有780条查询结果,搜索用时 15 毫秒
131.
Cyclotides are heat-stable macrocyclic peptides from plants that display a wide range of biological activities. They can be divided into two subfamilies: Möbius or bracelet, based on the presence or absence of a cis-proline residue in loop 5, respectively. Currently, over 150 cyclotides have been discovered, but only four linear variants of the Möbius subfamily have been hitherto isolated. In this study, we report the discovery of two novel cyclotides, hedyotide B1 and hedyotide B2, from the aerial parts of Hedyotis biflora. Hedyotide B1 has a cyclic cystine knot structure typical of cyclotides. Interestingly, hedyotide B2 possesses a linear backbone and is the first linear representative of the bracelet subfamily. Disulfide mapping of hedyotide B2 by a top-down MS/MS approach showed that it shares the same knotted disulfide arrangement as conventional cyclotides. Its unfolding pathway also showed that the penetrating disulfide bond Cys III–VI is the most stable disulfide linkage. Cloning of the gene encoding hedyotide B2 revealed a nonsense mutation that introduces a premature stop codon at the conserved Asn residue position, which is essential for an end-to-end backbone ligation. Biophysical characterization showed that hedyotide B2 was more susceptible to exopeptidase degradation as compared with hedyotide B1. Hedyotide B2 was also inactive against all four tested bacterial strains, whereas hedyotide B1 was bactericidal to Escherichia coli and Streptococcus salivarius at low micromolar concentration. Our results provide a deeper understanding of the structures, functions, and biosynthetic processing of cyclotides and uncyclotides in plants.  相似文献   
132.
The small GTPase Arf1 plays critical roles in membrane traffic by initiating the recruitment of coat proteins and by modulating the activity of lipid-modifying enzymes. Here, we report an unexpected but evolutionarily conserved role for Arf1 and the ArfGEF GBF1 at mitochondria. Loss of function of ARF-1 or GBF-1 impaired mitochondrial morphology and activity in Caenorhabditis elegans. Similarly, mitochondrial defects were observed in mammalian and yeast cells. In Saccharomyces cerevisiae, aberrant clusters of the mitofusin Fzo1 accumulated in arf1-11 mutants and were resolved by overexpression of Cdc48, an AAA-ATPase involved in ER and mitochondria-associated degradation processes. Yeast Arf1 co-fractionated with ER and mitochondrial membranes and interacted genetically with the contact site component Gem1. Furthermore, similar mitochondrial abnormalities resulted from knockdown of either GBF-1 or contact site components in worms, suggesting that the role of Arf1 in mitochondrial functioning is linked to ER–mitochondrial contacts. Thus, Arf1 is involved in mitochondrial homeostasis and dynamics, independent of its role in vesicular traffic.  相似文献   
133.
Identification of the coding elements in the genome is a fundamental step to understanding the building blocks of living systems. Short peptides (< 100 aa) have emerged as important regulators of development and physiology, but their identification has been limited by their size. We have leveraged the periodicity of ribosome movement on the mRNA to define actively translated ORFs by ribosome footprinting. This approach identifies several hundred translated small ORFs in zebrafish and human. Computational prediction of small ORFs from codon conservation patterns corroborates and extends these findings and identifies conserved sequences in zebrafish and human, suggesting functional peptide products (micropeptides). These results identify micropeptide‐encoding genes in vertebrates, providing an entry point to define their function in vivo.  相似文献   
134.
Mitophagy is a degradative process that adapts the quantity and quality of mitochondria to the cellular needs. Mitochondria destined for degradation are marked by specific receptors that recruit the core autophagic machinery to the organellar surface. The organelle is then enclosed by a phagophore (PG) which fuses with the lysosome or vacuole where the mitochondrion is degraded. In spite of significant progress in recent years, several parts of the molecular machinery of mitophagy remain unknown. We used yeast as a model organism to screen for novel components and identified the mitochondria-ER tether ERMES (ER-mitochondria encounter structure) as a major player contributing to mitophagy and formation of mitophagosomes. Tethering of mitochondria to the ER appears to be important to supply the growing PG with lipids synthesized in the ER.  相似文献   
135.
The complement system is an essential part of the innate immune system by acting as a first line of defense which is stabilized by properdin, the sole known positive regulator of the alternative complement pathway. Dysregulation of complement can promote a diversity of human inflammatory diseases which are treated by complement inhibitors. Here, we generated a novel blocking monoclonal antibody (mAb) against properdin and devised a new diagnostic assay for this important complement regulator. Mouse mAb 1340 specifically detected native properdin from human samples with high avidity. MAb 1340 inhibited specifically the alternative complement mediated cell lysis within a concentration range of 1–10 µg/mL. Thus, in vitro anti-properdin mAb 1340 was up to fifteen times more efficient in blocking the complement system as compared to anti-C5 or anti-Ba antibodies. Computer-assisted modelling suggested a three-dimensional binding epitope in a properdin-C3(H2O)-clusterin complex to be responsible for the inhibition. Recovery of properdin in a newly established sandwich ELISA using mAb 1340 was determined at 80–125% for blood sample dilutions above 1∶50. Reproducibility assays showed a variation below 25% at dilutions less than 1∶1,000. Systemic properdin concentrations of healthy controls and patients with age-related macular degeneration or rheumatic diseases were all in the range of 13–30 µg/mL and did not reveal significant differences. These initial results encourage further investigation into the functional role of properdin in the development, progression and treatment of diseases related to the alternative complement pathway. Thus, mAb 1340 represents a potent properdin inhibitor suitable for further research to understand the exact mechanisms how properdin activates the complement C3-convertase and to determine quantitative levels of properdin in biological samples.  相似文献   
136.
RAC/ROP GTPases coordinate actin dynamics and membrane traffic during polar plant cell expansion. In tobacco (Nicotiana tabacum), pollen tube tip growth is controlled by the RAC/ROP GTPase RAC5, which specifically accumulates at the apical plasma membrane. Here, we describe the functional characterization of RISAP, a RAC5 effector identified by yeast (Saccharomyces cerevisiae) two-hybrid screening. RISAP belongs to a family of putative myosin receptors containing a domain of unknown function 593 (DUF593) and binds via its DUF593 to the globular tail domain of a tobacco pollen tube myosin XI. It also interacts with F-actin and is associated with a subapical trans-Golgi network (TGN) compartment, whose cytoplasmic position at the pollen tube tip is maintained by the actin cytoskeleton. In this TGN compartment, apical secretion and endocytic membrane recycling pathways required for tip growth appear to converge. RISAP overexpression interferes with apical membrane traffic and blocks tip growth. RAC5 constitutively binds to the N terminus of RISAP and interacts in an activation-dependent manner with the C-terminal half of this protein. In pollen tubes, interaction between RAC5 and RISAP is detectable at the subapical TGN compartment. We present a model of RISAP regulation and function that integrates all these findings.  相似文献   
137.
While engaged in protein transport, the bacterial translocon SecYEG must maintain the membrane barrier to small ions. The preservation of the proton motif force was attributed to (i) cation exclusion, (ii) engulfment of the nascent chain by the hydrophobic pore ring, and (iii) a half-helix partly plugging the channel. In contrast, we show here that preservation of the proton motif force is due to a voltage-driven conformational change. Preprotein or signal peptide binding to the purified and reconstituted SecYEG results in large cation and anion conductivities only when the membrane potential is small. Physiological values of membrane potential close the activated channel. This voltage-dependent closure is not dependent on the presence of the plug domain and is not affected by mutation of 3 of the 6 constriction residues to glycines. Cellular ion homeostasis is not challenged by the small remaining leak conductance.  相似文献   
138.
c-Type cytochromes are widespread proteins, fundamental for respiration or photosynthesis in most cells. They contain heme covalently bound to protein in a highly conserved, highly stereospecific post-translational modification. In many bacteria, mitochondria, and archaea this heme attachment is catalyzed by the cytochrome c maturation (Ccm) proteins. Here we identify and characterize a covalent, ternary complex between the heme chaperone CcmE, heme, and cytochrome c. Formation of the complex from holo-CcmE occurs in vivo and in vitro and involves the specific heme-binding residues of both CcmE and apocytochrome c. The enhancement and attenuation of the amounts of this complex correlates completely with known consequences of mutations in genes for other Ccm proteins. We propose the complex is a trapped catalytic intermediate in the cytochrome c biogenesis process, at the point of heme transfer from CcmE to the cytochrome, the key step in the maturation pathway.  相似文献   
139.
Mitochondria are amazingly dynamic organelles. They continuously move along cytoskeletal tracks and frequently fuse and divide. These processes are important for maintenance of mitochondrial functions, for inheritance of the organelles upon cell division, for cellular differentiation and for apoptosis. As the machinery of mitochondrial behavior has been highly conserved during evolution, it can be studied in simple model organisms, such as yeast. During the past decade, several key components of mitochondrial dynamics have been identified and functionally characterized in Saccharomyces cerevisiae. These include the mitochondrial fusion and fission machineries and proteins required for maintenance of tubular shape and mitochondrial motility. Taken together, these findings reveal a comprehensive picture that shows the cellular processes and molecular components required for mitochondrial inheritance and morphogenesis in a simple eukaryotic cell.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号