首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   582篇
  免费   55篇
  国内免费   1篇
  2023年   4篇
  2022年   13篇
  2021年   28篇
  2020年   13篇
  2019年   16篇
  2018年   22篇
  2017年   23篇
  2016年   33篇
  2015年   41篇
  2014年   49篇
  2013年   45篇
  2012年   62篇
  2011年   53篇
  2010年   29篇
  2009年   29篇
  2008年   40篇
  2007年   27篇
  2006年   26篇
  2005年   12篇
  2004年   14篇
  2003年   19篇
  2002年   14篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   6篇
  1993年   1篇
  1992年   2篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1973年   1篇
  1932年   1篇
  1910年   1篇
排序方式: 共有638条查询结果,搜索用时 328 毫秒
111.
RAC/ROP GTPases coordinate actin dynamics and membrane traffic during polar plant cell expansion. In tobacco (Nicotiana tabacum), pollen tube tip growth is controlled by the RAC/ROP GTPase RAC5, which specifically accumulates at the apical plasma membrane. Here, we describe the functional characterization of RISAP, a RAC5 effector identified by yeast (Saccharomyces cerevisiae) two-hybrid screening. RISAP belongs to a family of putative myosin receptors containing a domain of unknown function 593 (DUF593) and binds via its DUF593 to the globular tail domain of a tobacco pollen tube myosin XI. It also interacts with F-actin and is associated with a subapical trans-Golgi network (TGN) compartment, whose cytoplasmic position at the pollen tube tip is maintained by the actin cytoskeleton. In this TGN compartment, apical secretion and endocytic membrane recycling pathways required for tip growth appear to converge. RISAP overexpression interferes with apical membrane traffic and blocks tip growth. RAC5 constitutively binds to the N terminus of RISAP and interacts in an activation-dependent manner with the C-terminal half of this protein. In pollen tubes, interaction between RAC5 and RISAP is detectable at the subapical TGN compartment. We present a model of RISAP regulation and function that integrates all these findings.  相似文献   
112.
While engaged in protein transport, the bacterial translocon SecYEG must maintain the membrane barrier to small ions. The preservation of the proton motif force was attributed to (i) cation exclusion, (ii) engulfment of the nascent chain by the hydrophobic pore ring, and (iii) a half-helix partly plugging the channel. In contrast, we show here that preservation of the proton motif force is due to a voltage-driven conformational change. Preprotein or signal peptide binding to the purified and reconstituted SecYEG results in large cation and anion conductivities only when the membrane potential is small. Physiological values of membrane potential close the activated channel. This voltage-dependent closure is not dependent on the presence of the plug domain and is not affected by mutation of 3 of the 6 constriction residues to glycines. Cellular ion homeostasis is not challenged by the small remaining leak conductance.  相似文献   
113.
Mitochondria are amazingly dynamic organelles. They continuously move along cytoskeletal tracks and frequently fuse and divide. These processes are important for maintenance of mitochondrial functions, for inheritance of the organelles upon cell division, for cellular differentiation and for apoptosis. As the machinery of mitochondrial behavior has been highly conserved during evolution, it can be studied in simple model organisms, such as yeast. During the past decade, several key components of mitochondrial dynamics have been identified and functionally characterized in Saccharomyces cerevisiae. These include the mitochondrial fusion and fission machineries and proteins required for maintenance of tubular shape and mitochondrial motility. Taken together, these findings reveal a comprehensive picture that shows the cellular processes and molecular components required for mitochondrial inheritance and morphogenesis in a simple eukaryotic cell.  相似文献   
114.
c-Type cytochromes are widespread proteins, fundamental for respiration or photosynthesis in most cells. They contain heme covalently bound to protein in a highly conserved, highly stereospecific post-translational modification. In many bacteria, mitochondria, and archaea this heme attachment is catalyzed by the cytochrome c maturation (Ccm) proteins. Here we identify and characterize a covalent, ternary complex between the heme chaperone CcmE, heme, and cytochrome c. Formation of the complex from holo-CcmE occurs in vivo and in vitro and involves the specific heme-binding residues of both CcmE and apocytochrome c. The enhancement and attenuation of the amounts of this complex correlates completely with known consequences of mutations in genes for other Ccm proteins. We propose the complex is a trapped catalytic intermediate in the cytochrome c biogenesis process, at the point of heme transfer from CcmE to the cytochrome, the key step in the maturation pathway.  相似文献   
115.
Neuronal activity is energetically costly, but despite its importance, energy production and consumption have been studied in only a few neurone types. Neuroenergetics is of special importance in auditory brainstem nuclei, where neurones exhibit various biophysical adaptations for extraordinary temporal precision and show particularly high firing rates. We have studied the development of energy metabolism in three principal nuclei of the superior olivary complex (SOC) involved in precise binaural processing in the Mongolian gerbil (Meriones unguiculatus). We used immunohistochemistry to quantify metabolic markers for energy consumption (Na+/K+-ATPase) and production (mitochondria, cytochrome c oxidase activity and glucose transporter 3 (GLUT3)). In addition, we calculated neuronal ATP consumption for different postnatal ages (P0–90) based upon published electrophysiological and morphological data. Our calculations relate neuronal processes to the regeneration of Na+ gradients perturbed by neuronal firing, and thus to ATP consumption by Na+/K+-ATPase. The developmental changes of calculated energy consumption closely resemble those of metabolic markers. Both increase before and after hearing onset occurring at P12–13 and reach a plateau thereafter. The increase in Na+/K+-ATPase and mitochondria precedes the rise in GLUT3 levels and is already substantial before hearing onset, whilst GLUT3 levels are scarcely detectable at this age. Based on these findings we assume that auditory inputs crucially contribute to metabolic maturation. In one nucleus, the medial nucleus of the trapezoid body (MNTB), the initial rise in marker levels and calculated ATP consumption occurs distinctly earlier than in the other nuclei investigated, and is almost completed by hearing onset. Our study shows that the mathematical model used is applicable to brainstem neurones. Energy consumption varies markedly between SOC nuclei with their different neuronal properties. Especially for the medial superior olive (MSO), we propose that temporally precise input integration is energetically more costly than the high firing frequencies typical for all SOC nuclei.  相似文献   
116.
117.
Modified-live herpesvirus vaccines are widely used in humans and animals, but field strains can emerge that have a higher virulence and break vaccinal protection. Since the introduction of the first vaccine in the 1970s, Marek’s disease virus overcame the vaccine barrier by the acquisition of numerous genomic mutations. However, the evolutionary adaptations in the herpesvirus genome responsible for the vaccine breaks have remained elusive. Here, we demonstrate that point mutations in the multifunctional meq gene acquired during evolution can significantly alter virulence. Defined mutations found in highly virulent strains also allowed the virus to overcome innate cellular responses and vaccinal protection. Concomitantly, the adaptations in meq enhanced virus shedding into the environment, likely providing a selective advantage for the virus. Our study provides the first experimental evidence that few point mutations in a single herpesviral gene result in drastically increased virulence, enhanced shedding, and escape from vaccinal protection.  相似文献   
118.
In most cases, macroautophagy/autophagy serves to alleviate cellular stress and acts in a pro-survival manner. However, the effects of autophagy are highly contextual, and autophagic cell death (ACD) is emerging as an alternative paradigm of (stress- and drug-induced) cell demise. AT 101 ([-]-gossypol), a natural compound from cotton seeds, induces ACD in glioma cells as confirmed here by CRISPR/Cas9 knockout of ATG5 that partially, but significantly rescued cell survival following AT 101 treatment. Global proteomic analysis of AT 101-treated U87MG and U343 glioma cells revealed a robust decrease in mitochondrial protein clusters, whereas HMOX1 (heme oxygenase 1) was strongly upregulated. AT 101 rapidly triggered mitochondrial membrane depolarization, engulfment of mitochondria within autophagosomes and a significant reduction of mitochondrial mass and proteins that did not depend on the presence of BAX and BAK1. Conversely, AT 101-induced reduction of mitochondrial mass could be reversed by inhibiting autophagy with wortmannin, bafilomycin A1 and chloroquine. Silencing of HMOX1 and the mitophagy receptors BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like) significantly attenuated AT 101-dependent mitophagy and cell death. Collectively, these data suggest that early mitochondrial dysfunction and HMOX1 overactivation synergize to trigger lethal mitophagy, which contributes to the cell killing effects of AT 101 in glioma cells.

Abbreviations: ACD, autophagic cell death; ACN, acetonitrile; AT 101, (-)-gossypol; BAF, bafilomycin A1; BAK1, BCL2-antagonist/killer 1; BAX, BCL2-associated X protein; BH3, BCL2 homology region 3; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; BP, Biological Process; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; CC, Cellular Component; Con, control; CQ, chloroquine; CRISPR, clustered regularly interspaced short palindromic repeats; DMEM, Dulbecco’s Modified Eagle Medium; DTT, 1,4-dithiothreitol; EM, electron microscopy; ER, endoplasmatic reticulum; FACS, fluorescence-activated cell sorting; FBS, fetal bovine serum; FCCP, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GO, Gene Ontology; HAcO, acetic acid; HMOX1, heme oxygenase 1; DKO, double knockout; LC-MS/MS, liquid chromatography coupled to tandem mass spectrometry; LPL, lipoprotein lipase, MEFs, mouse embryonic fibroblasts; mPTP, mitochondrial permeability transition pore; MTG, MitoTracker Green FM; mt-mKeima, mito-mKeima; MT-ND1, mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; PBS, phosphate-buffered saline; PE, phosphatidylethanolamine; PI, propidium iodide; PRKN, parkin RBR E3 ubiquitin protein ligase; SDS, sodium dodecyl sulfate; SQSTM1/p62, sequestome 1; STS, staurosporine; sgRNA, single guide RNA; SILAC, stable isotope labeling with amino acids in cell culture; TFA, trifluoroacetic acid, TMRM, tetramethylrhodamine methyl ester perchlorate; WM, wortmannin; WT, wild-type  相似文献   

119.
120.
Vertebral fractures associated with the loss of structural integrity of neoplastic vertebrae are common, and determined to the deterioration of the bone quality in the lesion area. The prediction of the fracture risk in metastatically involved spines can guide in deciding if preventive solutions, such as medical prophylaxis, bracing, or surgery are indicated for the patient. In this study, finite element models of 22 thoracolumbar vertebrae were built based on CT scans of three spines, covering a wide spectrum of possible clinical scenarios in terms of age, bone quality and degenerative features, taking into account the local material properties of bone tissue. Simulations were performed in order to investigate the effect of the size and location of the tumoral lesion, the bone quality and the vertebral level in determining the structural stability of the neoplastic vertebrae. Tumors with random size and positions were added to the models, for a total of 660 simulations in which a compressive load was simulated. Results highlighted the fundamental role of the tumor size, whereas the other parameters had a lower, but non-negligible impact on the axial collapse of the vertebra, the vertebral bulge in the transverse plane and the canal narrowing under the application of the load. All the considered parameters are radiologically measurable, and can therefore be translated in a straightforward way to the clinical practice to support decisions about preventive treatment of metastatic fractures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号