首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   622篇
  免费   80篇
  2022年   7篇
  2021年   16篇
  2020年   5篇
  2018年   13篇
  2017年   5篇
  2016年   11篇
  2015年   17篇
  2014年   41篇
  2013年   30篇
  2012年   48篇
  2011年   42篇
  2010年   14篇
  2009年   27篇
  2008年   33篇
  2007年   32篇
  2006年   21篇
  2005年   20篇
  2004年   16篇
  2003年   22篇
  2002年   12篇
  2001年   10篇
  2000年   9篇
  1999年   13篇
  1997年   6篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   11篇
  1987年   8篇
  1986年   5篇
  1983年   7篇
  1982年   4篇
  1981年   10篇
  1980年   5篇
  1979年   6篇
  1977年   7篇
  1976年   4篇
  1975年   9篇
  1974年   7篇
  1973年   6篇
  1972年   4篇
  1971年   5篇
  1970年   5篇
  1969年   4篇
  1968年   10篇
  1967年   6篇
  1966年   4篇
  1965年   6篇
排序方式: 共有702条查询结果,搜索用时 15 毫秒
31.
Cation exchange chromatography (CEX) is an essential part of most monoclonal antibody (mAb) purification platforms. Process characterization and root cause investigation of chromatographic unit operations are performed using scale down models (SDM). SDM chromatography columns typically have the identical bed height as the respective manufacturing-scale, but a significantly reduced inner diameter. While SDMs enable process development demanding less material and time, their comparability to manufacturing-scale can be affected by variability in feed composition, mobile phase and resin properties, or dispersion effects depending on the chromatography system at hand. Mechanistic models can help to close gaps between scales and reduce experimental efforts compared to experimental SDM applications. In this study, a multicomponent steric mass-action (SMA) adsorption model was applied to the scale-up of a CEX polishing step. Based on chromatograms and elution pool data ranging from laboratory- to manufacturing-scale, the proposed modeling workflow enabled early identification of differences between scales, for example, system dispersion effects or ionic capacity variability. A multistage model qualification approach was introduced to measure the model quality and to understand the model's limitations across scales. The experimental SDM and the in silico model were qualified against large-scale data using the identical state of the art equivalence testing procedure. The mechanistic chromatography model avoided limitations of the SDM by capturing effects of bed height, loading density, feed composition, and mobile phase properties. The results demonstrate the applicability of mechanistic chromatography models as a possible alternative to conventional SDM approaches.  相似文献   
32.

Background

Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya.

Methods

Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates.

Results

Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR?=?0.94, 95% CI 0.90–0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010.

Conclusion

Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.  相似文献   
33.
The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV) infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web) and assists viral assembly in the close vicinity of lipid droplets (LDs). To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1–31), a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47) as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon), indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A) in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47—via its interaction with NS5A—serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web.  相似文献   
34.
35.
36.
For the past several decades it has been proposed that birds show latitudinal variation in song complexity. How universal this variation may be and what factors generate it, however, are still largely unknown. Furthermore, while migration is confounded with latitude, migratory behaviour alone may also be associated with variation in song complexity. In this paper we review the literature to assess current ideas on how latitude and migratory behaviour may drive large‐scale geographical patterns of song complexity. At least seven distinct hypotheses have been proposed in 29 studies of the topic. Four of these hypotheses posit that sexual selection pressures co‐vary with latitude and/or migration, resulting in concordant changes in song. Other hypotheses suggest that mechanisms other than sexual selection, such as large‐scale changes in environmental sound transmission properties, may be at play. Sixteen studies found support for increased song complexity with increased latitude and/or migration, whereas 13 did not. Relatively few studies exist on this topic, and methodological differences between them and variable definitions of ‘complexity’ make it difficult to determine whether results are comparable and concordant. At a minimum, it is possible to conclude there is no strong evidence that song complexity increases with latitude and/or migration in all birds. Future work should focus on examining multiple hypotheses at once to further advance our understanding of how latitude, migration and song complexity may or may not be related.  相似文献   
37.
In November 2021, the COVID-19 pandemic death toll surpassed five million individuals. We applied Mendelian randomization including >3,000 blood proteins as exposures to identify potential biomarkers that may indicate risk for hospitalization or need for respiratory support or death due to COVID-19, respectively. After multiple testing correction, using genetic instruments and under the assumptions of Mendelian Randomization, our results were consistent with higher blood levels of five proteins GCNT4, CD207, RAB14, C1GALT1C1, and ABO being causally associated with an increased risk of hospitalization or respiratory support/death due to COVID-19 (ORs = 1.12–1.35). Higher levels of FAAH2 were solely associated with an increased risk of hospitalization (OR = 1.19). On the contrary, higher levels of SELL, SELE, and PECAM-1 decrease risk of hospitalization or need for respiratory support/death (ORs = 0.80–0.91). Higher levels of LCTL, SFTPD, KEL, and ATP2A3 were solely associated with a decreased risk of hospitalization (ORs = 0.86–0.93), whilst higher levels of ICAM-1 were solely associated with a decreased risk of respiratory support/death of COVID-19 (OR = 0.84). Our findings implicate blood group markers and binding proteins in both hospitalization and need for respiratory support/death. They, additionally, suggest that higher levels of endocannabinoid enzymes may increase the risk of hospitalization. Our research replicates findings of blood markers previously associated with COVID-19 and prioritises additional blood markers for risk prediction of severe forms of COVID-19. Furthermore, we pinpoint druggable targets potentially implicated in disease pathology.  相似文献   
38.
The first step in the conversion of the isoprenoid intermediate, farnesyl diphosphate (FDP), to sesquiterpene phytoalexins in cotton (Gossypium barbadense) plants is catalyzed by delta-cadinene (CDN) synthase. CDN is the precursor of desoxyhemigossypol and hemigossypol defense sesquiterpenes. In this paper we have studied the mechanism for the cyclization of FDP and the putative intermediate, nerolidyl diphosphate, to CDN. A purified recombinant CDN synthase (CDN1-C1) expressed in Escherichia coli from CDN1-C1 cDNA isolated from Gossypium arboreum cyclizes (1RS)-[1-2H](E, E)-FDP to >98% [5-2H]and [11-2H]CDN. Enzyme reaction mixtures cyclize (3RS)-[4,4,13,13,13-2H5]-nerolidyl diphosphate to 62.1% [8,8,15,15,15-2H5]-CDN, 15.8% [6,6,15,15,15-2H5]-alpha-bisabolol, 8.1% [6,6,15,15,15-2H5]-(beta)-bisabolene, 9.8% [4,4,13,13-2H4]-(E)-beta-farnesene, and 4.2% unknowns. Competitive studies show that (3R)-nerolidyl diphosphate is the active enantiomer of (3RS)-nerolidyl diphosphate that cyclized to CDN. The kcat/Km values demonstrate that the synthase uses (E,E)-FDP as effectively as (3R)-nerolidyl diphosphate in the formation of CDN. Cyclization studies with (3R)-nerolidyl diphosphate show that the formation of CDN, (E)-beta-farnesene, and beta-bisabolene are enzyme dependent, but the formation of alpha-bisabolol in the reaction mixtures was a Mg2+-dependent solvolysis of nerolidyl diphosphate. Enzyme mechanisms are proposed for the formation of CDN from (E,E)-FDP and for the formation of CDN, (E)-beta-farnesene, and beta-bisabolene from (3RS)-nerolidyl diphosphate. The primary structures of cotton CDN synthase and tobacco epi-aristolochene synthase show 48% identity, suggesting similar three-dimensional structures. We used the SWISS-MODEL to test this. The two enzymes have the same overall structure consisting of two alpha-helical domains and epi-aristolochene synthase is a good model for the structure of CDN synthase. Several amino acids in the primary structures of both synthases superimpose. The amino acids having catalytic roles in epi-aristochene synthase are substituted in the CDN synthase and may be related to differences in catalytic properties.  相似文献   
39.
BRCA2 deficiency in mice leads to meiotic impairment and infertility   总被引:6,自引:0,他引:6  
The role of Brca2 in gametogenesis has been obscure because of embryonic lethality of the knockout mice. We generated Brca2-null mice carrying a human BAC with the BRCA2 gene. This construct rescues embryonic lethality and the mice develop normally. However, there is poor expression of the transgene in the gonads and the mice are infertile, allowing examination of the function of BRCA2 in gametogenesis. BRCA2-deficient spermatocytes fail to progress beyond the early prophase I stage of meiosis. Observations on localization of recombination-related and spermatogenic-related proteins suggest that the spermatocytes undergo early steps of recombination (DNA double strand break formation), but fail to complete recombination or initiate spermiogenic development. In contrast to the early meiotic prophase arrest of spermatocytes, some mutant oocytes can progress through meiotic prophase I, albeit with a high frequency of nuclear abnormalities, and can be fertilized and produce embryos. Nonetheless, there is marked depletion of germ cells in adult females. These studies provide evidence for key roles of the BRCA2 protein in mammalian gametogenesis and meiotic success.  相似文献   
40.
A new cotton variant with reduced levels of terpenoid aldehydes (sesquiterpenoids and sesterterpenoids (heliocides)) was isolated from the progeny of hemizygous cotton (Gossypium hirsutum cv. Coker 312) transformed with antisense (+)-delta-cadinene synthase cDNA. Southern analysis of leaf DNA digested with HindIII, Pst or KpnI restriction endonucleases did not detect any antisense cdn1-C1 DNA in the genome of the variant. The gossypol content in the seed of the variant was markedly lower than in the seed of T1 antisense plants. Eighty-nine percent of the variant seed had a 71.1% reduction in gossypol and the foliage of the variant plants showed a 70% reduction in gossypol and a 31% reduction in heliocides. Compared to non-transformed plants there was no reduction in the number of lysigenous glands in the seed of the variant. The cotton variant shows uncoupling of terpenoid aldehyde synthesis and gland formation. The cotton variant may have resulted from somaclonal variation occurring in the callus tissue during the transformation-regeneration process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号