首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1501篇
  免费   98篇
  国内免费   2篇
  1601篇
  2023年   8篇
  2022年   28篇
  2021年   44篇
  2020年   21篇
  2019年   35篇
  2018年   37篇
  2017年   33篇
  2016年   63篇
  2015年   66篇
  2014年   80篇
  2013年   109篇
  2012年   106篇
  2011年   153篇
  2010年   53篇
  2009年   70篇
  2008年   96篇
  2007年   81篇
  2006年   73篇
  2005年   70篇
  2004年   55篇
  2003年   51篇
  2002年   53篇
  2001年   21篇
  2000年   15篇
  1999年   13篇
  1998年   14篇
  1997年   10篇
  1996年   8篇
  1995年   5篇
  1994年   4篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   7篇
  1985年   4篇
  1984年   8篇
  1983年   3篇
  1981年   5篇
  1979年   4篇
  1978年   5篇
  1977年   10篇
  1976年   4篇
  1975年   9篇
  1974年   13篇
  1973年   6篇
  1971年   4篇
  1968年   3篇
排序方式: 共有1601条查询结果,搜索用时 15 毫秒
111.
Disorders of iron metabolism are among the most common acquired and constitutive diseases. Hemochromatosis has a solid genetic basis and in Northern European populations it is usually associated with homozygosity for the C282Y mutation in the HFE protein. However, the penetrance of this mutation is incomplete and the clinical presentation is highly variable. The rare and common variants identified so far as genetic modifiers of HFE-related hemochromatosis are unable to account for the phenotypic heterogeneity of this disorder. There are wide variations in the basal iron status of common inbred mouse strains, and this diversity may reflect the genetic background of the phenotypic diversity under pathological conditions. We therefore examined the genetic basis of iron homeostasis using quantitative trait loci mapping applied to the HcB-15 recombinant congenic strains for tissue and serum iron indices. Two highly significant QTL containing either the N374S Mon1a mutation or the Ferroportin locus were found to be major determinants in spleen and liver iron loading. Interestingly, when considering possible epistatic interactions, the effects of Mon1a on macrophage iron export are conditioned by the genotype at the Slc40a1 locus. Only mice that are C57BL/10ScSnA homozygous at both loci display a lower spleen iron burden. Furthermore, the liver-iron lowering effect of the N374S Mon1a mutation is observed only in mice that display a nonsense mutation in the Ceruloplasmin (Cp) gene. This study highlights the existence of genetic interactions between Cp, Mon1a, and the Slc40a1 locus in iron metabolism, suggesting that epistasis may be a crucial determinant of the variable biological and clinical presentations in iron disorders.  相似文献   
112.
113.

Objectives

HPV infection causes cervical cancer, yet information on prevalence and risk factors for HPV in Africa remain sparse. This study describes the prevalence of HPV genotypes and risk factors associated with HPV among young women ≤ 30 years of age in KwaZulu-Natal (KZN), South Africa.

Methods

Cervicovaginal lavage samples were tested for HPV genotypes in 224 women enrolled in a prospective cohort study. Clinical, behavioural and demographic data were collected. We measured prevalence of HPV genotypes and using logistic regression, examined for factors associated with HPV.

Results

Median age of participants was 21 years [interquartile range (IQR):18–23]. The overall prevalence of HPV was 76.3% (171/224) with multiple and single genotypes prevalent in 56.3% and 20.1% of women respectively. Proportion of women with high-risk genotypes (16, 18, 31, 33, 35, 39, 45, 51, 52, 56 and 58) was 54.5%. Women not living with their partner [adjusted odds ratio (aOR)] = 3.42 95% CI1.22–9.60; p = 0.019), was significantly associated with HPV infection and high-risk HPV genotype infection.

Conclusion

The high burden of HPV and associated risk behaviours highlight the need to intensify behavioural interventions to prevent HPV acquisition in young women. The large scale delivery of HPV vaccine should be prioritised to prevent HPV acquisition and reduce HPV-related morbidity.  相似文献   
114.
115.
Several species of cyanobacteria biomineralizing intracellular amorphous calcium carbonates (ACC) were recently discovered. However, the mechanisms involved in this biomineralization process and the determinants discriminating species forming intracellular ACC from those not forming intracellular ACC remain unknown. Recently, it was hypothesized that the intensity of Ca uptake (i.e., how much Ca was scavenged from the extracellular solution) might be a major parameter controlling the capability of a cyanobacterium to form intracellular ACC. Here, we tested this hypothesis by systematically measuring the Ca uptake by a set of 52 cyanobacterial strains cultured in the same growth medium. The results evidenced a dichotomy among cyanobacteria regarding Ca sequestration capabilities, with all strains forming intracellular ACC incorporating significantly more calcium than strains not forming ACC. Moreover, Ca provided at a concentration of 50 μM in BG‐11 was shown to be limiting for the growth of some of the strains forming intracellular ACC, suggesting an overlooked quantitative role of Ca for these strains. All cyanobacteria forming intracellular ACC contained at least one gene coding for a mechanosensitive channel, which might be involved in Ca influx, as well as at least one gene coding for a Ca2+/H+ exchanger and membrane proteins of the UPF0016 family, which might be involved in active Ca transport either from the cytosol to the extracellular solution or the cytosol toward an intracellular compartment. Overall, massive Ca sequestration may have an indirect role by allowing the formation of intracellular ACC. The latter may be beneficial to the growth of the cells as a storage of inorganic C and/or a buffer of intracellular pH. Moreover, high Ca scavenging by cyanobacteria biomineralizing intracellular ACC, a trait shared with endolithic cyanobacteria, suggests that these cyanobacteria should be considered as potentially significant geochemical reservoirs of Ca.  相似文献   
116.
Optimization of fed-batch feeding parameters was explored for a system with multiple mechanisms of product inactivation. In particular, two separate mechanisms of inactivation were identified for the recombinant tissue-type activator (r-tPA) protein. Dynamic inactivation models were written to describe particular r-tPA glycoform inactivation in the presence and absence of free-glucose. A glucose-independent inactivation mechanism was identified, and inactivation rate constants were found dependent upon the presence of glycosylation of r-tPA at N184. Inactivation rate constants of the glucose-dependent mechanism were not affected by glycosylation at N184. Fed-batch optimization was performed for r-tPA production by CHO cell culture in a stirred-tank reactor with glucose, glutamine and asparagine feed. Feeding profiles in which culture supernatant concentrations of free-glucose and amino acids (combined glutamine and asparagine) were used as control variables, were evaluated for a wide variety of set points. Simulation results for a controlled feeding strategy yielded an optimum at set points of 1.51 g L(-1) glucose and 1.18 g L(-1) of amino acids. Optimization was also performed in absence of metabolite control using fixed feed-flow rates initiate during the exponential growth phase. Fixed feed-flow results displayed a family of optimum solutions along a mass flow rate ratio of 3.15 of glucose to amino acids. Comparison of the two feeding strategies showed a slight advantage of rapid feeding at a fixed flow rate as opposed to metabolite control for a product with multiple mechanisms of inactivation.  相似文献   
117.
Cardio/cerebrovascular diseases (CVD) have become one of the major health issue in our societies. But recent studies show that the present pathology tests to detect CVD are ineffectual as they do not consider different stages of platelet activation or the molecular dynamics involved in platelet interactions and are incapable to consider inter-individual variability. Here we propose a stochastic platelet deposition model and an inferential scheme to estimate the biologically meaningful model parameters using approximate Bayesian computation with a summary statistic that maximally discriminates between different types of patients. Inferred parameters from data collected on healthy volunteers and different patient types help us to identify specific biological parameters and hence biological reasoning behind the dysfunction for each type of patients. This work opens up an unprecedented opportunity of personalized pathology test for CVD detection and medical treatment.  相似文献   
118.
Lis1 protein is the non-catalytic component of platelet-activating factor acetylhydrolase 1b (PAF-AH 1B) and associated with microtubular structures. Hemizygous mutations of the LIS1 gene cause type I lissencephaly, a brain abnormality with developmental defects of neuronal migration. Lis1 is also expressed in testis, but its function there has not been determined. We have generated a mouse mutant (LIS1GT/GT) by gene trap integration leading to selective disruption of a Lis1 splicing variant in testis. Homozygous mutant males are infertile with no other apparent phenotype. We demonstrate that Lis1 is predominantly expressed in spermatids, and spermiogenesis is blocked when Lis1 is absent. Mutant spermatids fail to form correct acrosomes and nuclei appear distorted in size and shape. The tissue architecture in mutant testis appears severely disturbed displaying collapsed seminiferous tubules, mislocated germ cells, and increased apoptosis. These results provide evidence for an essential and hitherto uncharacterized role of the Lis1 protein in spermatogenesis, particularly in the differentiation of spermatids into spermatozoa.  相似文献   
119.
Identification and characterization of the nuclear proteome is important for detailed understanding of multiple signaling events in eukaryotic cells. Toward this goal, we extensively characterized the nuclear proteome of human T leukemia cells by sequential extraction of nuclear proteins with different physicochemical properties using three buffer conditions. This large scale proteomic study also tested the feasibility and technical challenges associated with stable isotope labeling by amino acids in cell culture (SILAC) to uncover quantitative changes during apoptosis. Analyzing proteins from three nuclear fractions extracted from naive and apoptotic cells generated 780,530 MS/MS spectra that were used for database searching using the SEQUEST algorithm. This analysis resulted in the identification and quantification of 1,174 putative nuclear proteins. A number of known nuclear proteins involved in apoptosis as well as novel proteins not known to be part of the nuclear apoptotic machinery were identified and quantified. Consistent with SILAC-based quantifications, immunofluorescence staining of nucleus, mitochondria, and some associated proteins from both organelles revealed a dynamic recruitment of mitochondria into nuclear invaginations during apoptosis.  相似文献   
120.
Regulation of migration and proliferation by calpain has been shown in various cell types; however, no data are available concerning calpain 2 (capn2) localization in embryonic tissues. Here, we report the expression pattern of capn2 during mouse embryonic development. Expression of the capn2 gene is observed throughout embryonic development. From ES cells and the 8-cell stage to late neurulation stages, CAPN2 is expressed in the cytoplasm and nuclear compartments, with a clear co-localisation with chromatin. Whole-mount in situ hybridization analysis from E8.5 to 14.5 stages indicates high levels of capn2 expression in the nervous system, heart and mesodermal tissues. Up-regulation is maintained during later developmental stages in proliferating cells and in precursor cells involved in muscle (myoblasts) or bone formation (chondrocytes). At later developmental stages, elevated mRNA levels coincided with CAPN2 nuclear localization in these cell types, while differentiated cells maintained cytoplasmic expression. This detailed analysis reveals dynamic expression: nuclear localization was associated either with active cell mitosis in embryonic stem cells and early developmental stages or with precursor cells later during organogenesis. Thus, these data indicate that CAPN2 may represent a key factor in development from the first cell division.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号