首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   29篇
  336篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   11篇
  2020年   6篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   11篇
  2015年   30篇
  2014年   20篇
  2013年   22篇
  2012年   25篇
  2011年   33篇
  2010年   13篇
  2009年   15篇
  2008年   12篇
  2007年   19篇
  2006年   19篇
  2005年   20篇
  2004年   23篇
  2003年   10篇
  2002年   9篇
  1998年   3篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1981年   1篇
  1980年   1篇
  1966年   1篇
  1903年   1篇
  1887年   1篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
151.
152.
Clonal propagation is considered to be the predominant mode of reproduction among many parasitic protozoa. However, this assumption may overlook unorthodox, infrequent or cryptic sexuality. Trypanosoma cruzi, which causes Chagas disease, is known to undergo non‐Mendelian genetic exchange in the laboratory. In the field, evidence of extant genetic exchange is limited. In this study, we undertook intensive sampling of T. cruzi Discrete Typing Unit I in endemic eastern Colombia. Using Fluorescence‐activated cell sorting, we generated 269 biological clones from 67 strains. Each clone was genotyped across 24 microsatellite loci. Subsequently, 100 representative clones were typed using 10 mitochondrial sequence targets (3.76 Kbp total). Clonal diversity among humans, reservoir hosts and vectors suggested complex patterns of superinfection and/or coinfection in oral and vector‐borne Chagas disease cases. Clonal diversity between mother and foetus in a congenital case demonstrates that domestic TcI genotypes are infective in utero. Importantly, gross incongruence between nuclear and mitochondrial markers is strong evidence for widespread genetic exchange throughout the data set. Furthermore, a confirmed mosaic maxicircle sequence suggests intermolecular recombination between individuals as a further mechanism of genetic reassortment. Finally, robust dating based on mitochondrial DNA indicates that the emergence of a widespread domestic TcI clade that we now name TcIDOM (formerly TcIa/VENDom) occurred 23 000 ± 12 000 years ago and was followed by population expansion, broadly corresponding with the earliest human migration into the Americas.  相似文献   
153.
Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα(+)) antigen-presenting cell subset, whilst SIRPα(-)CD11R1(+) antigen-presenting cells (APCs) are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα(+) antigen-presenting cells as orchestrators of early-life mucosal immune development.  相似文献   
154.
The septins are conserved, GTP-binding proteins important for cytokinesis, membrane compartmentalization, and exocytosis. However, it is unknown how septins are arranged within higher-order structures in cells. To determine the organization of septins in live cells, we developed a polarized fluorescence microscopy system to monitor the orientation of GFP dipole moments with high spatial and temporal resolution. When GFP was fused to septins, the arrangement of GFP dipoles reflected the underlying septin organization. We demonstrated in a filamentous fungus, a budding yeast, and a mammalian epithelial cell line that septin proteins were organized in an identical highly ordered fashion. Fluorescence anisotropy measurements indicated that septin filaments organized into pairs within live cells, just as has been observed in vitro. Additional support for the formation of pairs came from the observation of paired filaments at the cortex of cells using electron microscopy. Furthermore, we found that highly ordered septin structures exchanged subunits and rapidly rearranged. We conclude that septins assemble into dynamic, paired filaments in vivo and that this organization is conserved from yeast to mammals.  相似文献   
155.
156.
Rothmeier  Louisa Marie  Sahm  René  Watermann  Burkard  Grabow  Karsten  Koester  Meike  Cichy  Anna  Martens  Andreas 《Hydrobiologia》2021,848(10):2569-2578
Hydrobiologia - The introduction of non-indigenous organisms in new areas in the context of host-parasite interactions is still poorly understood. This study aimed at a parasitological and...  相似文献   
157.
158.
There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.  相似文献   
159.
LIM mineralization protein-1 (LMP-1) is a novel osteoinductive protein that has been cloned and shown to induce bone formation both in vitro and in vivo. Detection and evaluation of the possible presence of carbohydrate structures in LMP-1 is an important regulatory consideration for the therapeutic use of recombinantly expressed protein. The sequence of LMP-1 contains a highly conserved N-terminal PDZ domain and three C-terminal LIM domains. The sequence analysis of LMP-1 predicts two potential N-glycosylation sites and several O-glycosylation sites. Here, we report the cloning and overexpression of LMP-1 in human lung carcinoma (A549) cells. Even though our group already reported the sequence of LMP-1 cDNA, we undertook this work to clarify whether or not the overexpressed protein undergoes any glycosylation in vivo. The expressed full-length recombinant protein was purified and subjected to chemical analysis and internal sequencing. The absence of any hexosamines (N-acetyl glucosamine or N-acetyl galactosamine) in chemical composition analysis of LMP-1 protein revealed that there is little or no post-translational glycosylation of the LMP-1 polypeptide in lung carcinoma cells (A549). We performed in-gel trypsin digestion on purified LMP-1, and the resulting peptide digests were analyzed further using matrix-assisted laser desorption and ionization mass spectrometry for peptide mass finger printing, which produced several exact matches with the corresponding LMP-1 peptides. Separation by high performance liquid chromatography and purification of the desired peptides followed by N-terminal sequencing resulted in many exact LMP-1 matches for several purified peptides, thus establishing the identity of the purified protein as LMP-1.  相似文献   
160.
The human and rat forms of the Kv2.1 channel have identical amino acids over the membrane-spanning regions and differ only in the N- and C-terminal intracellular regions. Rat Kv2.1 activates much faster than human Kv2.1. Here we have studied the role of the N- and C-terminal residues that determine this difference in activation kinetics between the two channels. For this, we constructed mutants and chimeras between the two channels, expressed them in oocytes, and recorded currents by two-electrode voltage clamping. In the N-terminal region, mutation Q67E in the rat channel displayed a slowing of activation relative to rat wild type, whereas mutation D75E in the human channel showed faster activation than human wild type. In the C-terminal region, we found that some residues within the region of amino acids 740-853 ("CTA" domain) were also involved in determining activation kinetics. The electrophysiological data also suggested interactions between the N and C termini. Such an interaction was confirmed directly by using a glutathione S-transferase (GST) fusion protein with the N terminus of Kv2.1, which we showed to bind to the C terminus of Kv2.1. Taken together, these data suggest that exposed residues in the T1 domain of the N terminus, as well as the CTA domain in the C terminus, are important in determining channel activation kinetics and that these N- and C-terminal regions interact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号