首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   30篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   11篇
  2020年   6篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   11篇
  2015年   30篇
  2014年   20篇
  2013年   22篇
  2012年   25篇
  2011年   33篇
  2010年   13篇
  2009年   15篇
  2008年   12篇
  2007年   19篇
  2006年   19篇
  2005年   20篇
  2004年   23篇
  2003年   10篇
  2002年   9篇
  1998年   3篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1981年   1篇
  1980年   1篇
  1966年   1篇
  1903年   1篇
  1887年   1篇
排序方式: 共有336条查询结果,搜索用时 484 毫秒
141.
142.
In this study, ethyl acetate and aqueous fractions from 117 collections of Australian macrofungi belonging to the mushroom genus Cortinarius were screened for antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Overall, the lipophilic fractions were more active than the aqueous fractions. The ethyl acetate fractions of most or all collections of 13 species, namely Cortinarius ardesiacus, C. archeri, C. austrosaginus, C. austrovenetus, C. austroviolaceus, C. coelopus, C. [Dermocybe canaria]2, C. clelandii, C. [D. kula], C. memoria-annae, C. persplendidus, C. sinapicolor, C. vinosipes and forty seven collections of un-described Cortinarius species exhibited IC50 values of ?0.09 mg/mL against S. aureus. In contrast, most or all collections of only four species, namely C. abnormis, C. austroalbidus, C. [D. kula], C. persplendidus, and eleven un-described Cortinarius collections exhibited similar effects against P. aeruginosa (IC50 ? 0.09 mg/mL). Anthraquinonoid pigments isolated from C. basirubescens together with emodin physcion and erythrogluacin were assessed for their antimicrobial activity. The fungal octaketides austrocortilutein, austrocortirubin, torosachrysone, physcion and emodin were found to strongly inhibit the growth of S. aureus (IC50 0.7–12 μg/mL) whereas only physcion and emodin exhibited potency against P. aeruginosa (IC50 1.5 and 2.0 μg/mL, respectively).  相似文献   
143.
For the first time, the secondary ripple phase in a system containing dilauroyl phosphatidylcholine (DLPC) is observed by small-angle X-ray diffraction (SAXS). The SAXS profile exhibits many well-resolved peaks. The fast formation of this phase upon cooling from the liquid crystalline lamellar phase L(alpha) is induced by addition of C10G with molar ratio 0.17< or = R = [C10G]/[DLPC]< or = 0.49. For R < 0.17, the primary P(beta') ripple phase is observed. In contrast to the P(beta') phase, which shows a sawtooth shape, the secondary ripple structure is thought to be symmetric. The ripple length (190 angstroms) and the bilayer spacing (74 angstroms) are larger than in the primary ripple phase. Lattice parameters of the new long ripple phase, which are quite insensitive to temperature, vary slightly linearly with R. In this study, structural and thermodynamic changes within the samples were followed as a function of temperature by time-resolved X-ray diffraction coupled to DSC.  相似文献   
144.
The voltage-gated Kv2.1 channel is composed of four identical subunits folded around the central pore and does not inactivate appreciably during short depolarizing pulses. To study voltage-induced relative molecular rearrangements of the channel, Kv2.1 subunits were genetically fused with enhanced cyan fluorescent protein and/or enhanced yellow fluorescent protein, expressed in COS1 cells, and investigated using fluorescence resonance energy transfer (FRET) microscopy combined with patch clamp. Fusion of fluorophores to either or both termini of the Kv2.1 monomer did not significantly affect the gating properties of the channel. FRET between the N- and C-terminal tags fused to the same or different Kv2.1 monomers decreased upon activation of the channel by depolarization from -80 to +60 mV, suggesting voltage-gated relative rearrangement between the termini. Because FRET between the Kv2.1 N- or C-terminal tags and the membrane-trapped EYFP(N)-PH pleckstrin homology domains did not change on depolarization, voltage-gated relative movements between the Kv2.1 termini occurred in a plane parallel to the plasma membrane, within a distance of 1-10 nm. FRET between the N-terminal tags did not change upon depolarization, indicating that the N termini do not rearrange relative to each other, but they could either move cooperatively with the Kv2.1 tetramer or not move at all. No FRET was detected between the C-terminal tags. Assuming their randomized orientation in the symmetrically arranged Kv2.1 subunits, C termini may move outwards in order to produce relative rearrangements between N and C termini upon depolarization.  相似文献   
145.
Drosophila melanogaster has a robust and efficient innate immune system, which reacts to infections ranging from bacteria to fungi and, as discovered recently, viruses as well. The known Drosophila immune responses rely on humoral and cellular activities, similar to those found in the innate immune system of other animals. Recently, RNAi or 'RNA silencing' has arisen as a possible means by which Drosophila can react to a specific pathogens, transposons and retroviral elements, in a fashion similar to that of a traditional mammalian adaptive immune system instead of in a more generalized and genome encoded innate immune-based response. RNAi is a highly conserved regulation and defence mechanism, which suppresses gene expression via targeted RNA degradation directed by either exogenous dsRNA (cleaved into siRNAs) or endogenous miRNAs. In plants, RNAi has been found to act as an antiviral immune response system. Here we show that RNAi is an antiviral response used by Drosophila to combat infection by Drosophila X Virus, a birnavirus, as well. Additionally, we identify multiple core RNAi pathway genes, including piwi, vasa intronic gene (vig), aubergine (aub), armitage (armi), Rm62, r2d2 and Argonaute2 (AGO2) as having vital roles in this response in whole organisms. Our findings establish Drosophila as an ideal model for the study of antiviral RNAi responses in animals.  相似文献   
146.
Haemophilus parasuis is a Gram-negative respiratory pathogen of young pigs that colonizes the upper respiratory tract and produces a number of symptoms collectiviely described as Gl?sser's disease. Recently, an H. parasuis P5-like outer membrane adhesin protein homologous to H. influenzae P5 was identified. The P5 adhesin was partially purified by anion exchange and size-exclusion chromatography. Final purification for functional studies was performed by elution of the protein from a polyacrylamide gel. Identification of the protein as a P5 adhesin homolog of H. influenzae was confirmed by N-terminal sequencing. The P5 protein had a molecular mass of 32,000 and a pI of 5.5. Unlike the H. influenzae P5 adhesin, the H. parasuis P5 protein did not bind carcinoembryonic antigen.  相似文献   
147.
Steroid receptor RNA activator (SRA), the only known RNA coactivator, augments transactivation by nuclear receptors (NRs). We identified SLIRP (SRA stem-loop interacting RNA binding protein) binding to a functional substructure of SRA, STR7. SLIRP is expressed in normal and tumor tissues, contains an RNA recognition motif (RRM), represses NR transactivation in a SRA- and RRM-dependent manner, augments the effect of Tamoxifen, and modulates association of SRC-1 with SRA. SHARP, a RRM-containing corepressor, also binds STR7, augmenting repression with SLIRP. SLIRP colocalizes with SKIP (Chr14q24.3), another NR coregulator, and reduces SKIP-potentiated NR signaling. SLIRP is recruited to endogenous promoters (pS2 and metallothionein), the latter in a SRA-dependent manner, while NCoR promoter recruitment is dependent on SLIRP. The majority of the endogenous SLIRP resides in the mitochondria. Our data demonstrate that SLIRP modulates NR transactivation, suggest it may regulate mitochondrial function, and provide mechanistic insight into interactions between SRA, SLIRP, SRC-1, and NCoR.  相似文献   
148.
The orphan nuclear receptor COUP-TFI (Nr2f1) regulates many aspects of mammalian development, but little is known about its role in cochlear hair cell and Deiter's support cell development. The COUP-TFI knockout (COUP-TFI(-/-)) has a significant increase in hair cell (HC) number in the mid-to-apical turns. The total number of hair cells is not increased over wild type, perhaps because of displaced hair cells and a shortened cochlear duct. This implicates a defect of convergent-extension in the COUP-TFI(-/-) duct. In addition, excess proliferation in the COUP-TFI(-/-) sensory epithelium indicates that the origin of the extra HCs in the apex is complex. Because loss-of-function studies of Notch signaling components have similar phenotypes, we investigated Notch regulation of hair cell differentiation in COUP-TFI(-/-) mice and confirmed misregulation of Notch signaling components, including Jag1, Hes5 and in a manner consistent with reduced Notch signaling, and correlated with increases in hair cell and support cell differentiation. The disruption of Notch signaling by a gamma-secretase inhibitor in an in vitro organ culture system of wild-type cochleae resulted in a reduction in expression of the Notch target gene Hes5 and an increase in hair cell differentiation. Importantly, inhibition of Notch activity resulted in a greater increase in hair cell differentiation in COUP-TFI(-/-) cochlear cultures than in wild-type cultures, suggesting a hypersensitivity to Notch inactivation in COUP-TFI(-/-) cochlea, particularly at the apical turn. Thus, we present evidence that reduced Notch signaling contributes to increases in hair cell and support cell differentiation in COUP-TFI(-/-) mice, and suggest that COUP-TFI is required for Notch regulation of hair cell and support cell differentiation.  相似文献   
149.
Rothmeier  Louisa Marie  Sahm  René  Watermann  Burkard  Grabow  Karsten  Koester  Meike  Cichy  Anna  Martens  Andreas 《Hydrobiologia》2021,848(10):2569-2578
Hydrobiologia - The introduction of non-indigenous organisms in new areas in the context of host-parasite interactions is still poorly understood. This study aimed at a parasitological and...  相似文献   
150.
Ion-transporting rhodopsins are widely utilized as optogenetic tools both for light-induced neural activation and silencing. The most studied representative is Bacteriorhodopsin (BR), which absorbs green/red light (∼570 nm) and functions as a proton pump. Upon photoexcitation, BR induces a hyperpolarization across the membrane, which, if incorporated into a nerve cell, results in its neural silencing. In this study, we show that several residues around the retinal chromophore, which are completely conserved among BR homologs from the archaea, are involved in the spectral tuning in a BR homolog (HwBR) and that the combination mutation causes a large spectral blue shift (λmax = 498 nm) while preserving the robust pumping activity. Quantum mechanics/molecular mechanics calculations revealed that, compared with the wild type, the β-ionone ring of the chromophore in the mutant is rotated ∼130° because of the lack of steric hindrance between the methyl groups of the retinal and the mutated residues, resulting in the breakage of the π conjugation system on the polyene chain of the retinal. By the same mutations, similar spectral blue shifts are also observed in another BR homolog, archearhodopsin-3 (also called Arch). The color variant of archearhodopsin-3 could be successfully expressed in the neural cells of Caenorhabditis elegans, and illumination with blue light (500 nm) led to the effective locomotory paralysis of the worms. Thus, we successfully produced a blue-shifted proton pump for neural silencing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号