首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   2篇
  90篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   8篇
  2014年   6篇
  2013年   2篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   10篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1984年   1篇
  1977年   1篇
排序方式: 共有90条查询结果,搜索用时 0 毫秒
21.
TSG-6 is an inflammation-induced protein that is produced at pathological sites, including arthritic joints. In animal models of arthritis, TSG-6 protects against joint damage; this has been attributed to its inhibitory effects on neutrophil migration and plasmin activity. Here we investigated whether TSG-6 can directly influence bone erosion. Our data reveal that TSG-6 inhibits RANKL-induced osteoclast differentiation/activation from human and murine precursor cells, where elevated dentine erosion by osteoclasts derived from TSG-6(-/-) mice is consistent with the very severe arthritis seen in these animals. However, the long bones from unchallenged TSG-6(-/-) mice were found to have higher trabecular mass than controls, suggesting that in the absence of inflammation TSG-6 has a role in bone homeostasis; we have detected expression of the TSG-6 protein in the bone marrow of unchallenged wild type mice. Furthermore, we have observed that TSG-6 can inhibit bone morphogenetic protein-2 (BMP-2)-mediated osteoblast differentiation. Interaction analysis revealed that TSG-6 binds directly to RANKL and to BMP-2 (as well as other osteogenic BMPs but not BMP-3) via composite surfaces involving its Link and CUB modules. Consistent with this, the full-length protein is required for maximal inhibition of osteoblast differentiation and osteoclast activation, although the isolated Link module retains significant activity in the latter case. We hypothesize that TSG-6 has dual roles in bone remodeling; one protective, where it inhibits RANKL-induced bone erosion in inflammatory diseases such as arthritis, and the other homeostatic, where its interactions with BMP-2 and RANKL help to balance mineralization by osteoblasts and bone resorption by osteoclasts.  相似文献   
22.
Two osteoblastic cell populations, calvarial and marrow stromal cells, were exposed to estrogen derivatives in vitro. The hormonal effect was monitored by following intracellular Ca+2 levels [Ca+2]i and gap-junction communication. We measured fast changes in intracellular Ca+2 levels in response, of these cells, to the steroid hormones. The changes were dose dependent revealing maximal activity at 100 pM by 17-β-Estradiol and 1 nM by estradiol-CMO. Additionally, the effect of estrogen, on functional coupling of the cells, was measured using fluorescence dye migration and counting the number of neighboring cells coupled by gap junctions. An uncoupling effect was demonstrated in response of these cells to estrogen treatment. The quick stereospecific effect was achieved in the presence of 17-β-estradiol but not in the presence of 17-α-estradiol. These results suggest the involvement of plasma membrane receptors in addition to the already known nuclear receptors in transducing the hormone effects in the osteoblastic cells. J. Cell. Biochem. 69:282–290, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
23.
Our aim was to study the role of various extracellular matrices (ECM) on growth and differentiation of marrow stromal cells in vitro. Morphology changes, gene expression, and enzymatic activities were monitored in stromal osteoblastic MBA-15 and adipocytic 14F1.1 cells. These stromal cells were plated on dishes precoated with different substrata, such as matrigel (basement membrane), collagen type I, and endothelial ECM, and compared with cells plated on protein-free dishes. Striking morphological differences were observed when the cells grew on these different substrata. Changes in cell shape and growth also led to differential mRNA expression and enzymatic activities. When MBA-15 cells were plated on collagen, there was a decrease in mRNA for alkaline phosphatase (ALK-P), osteopontin (OP), and osteonectin (ON), and an increase in mRNA for procollagen (I). A differential effect was noted on 14F1.1 cells, the mRNA for ALK-P increased, the expressions of OP and ON lowered, and no expression for procollagen (I) was monitored. MBA-15 cells cultured on matrigel had decreased mRNA for ALK-P and OP, while they had increased ON mRNA expression and remained unchanged for procollagen 1. No change in mRNA expression by 14F1.1 cells was monitored when cultured on matrigel. Functional enzymatic activities of ALK-P markedly decreased in MBA-15 cells cultured on various substrata, and increased or were unchanged in 14F1.1 cells. An additional enzyme, neutral endopeptidase (CD10/NEP), altered differentially in both cell types; this enzymatic activity increased or was unchanged when cells were cultured on these matrices. The results indicate a specific role for different ECM on various stromal cell types and their function. © 1996 Wiley-Liss, Inc.  相似文献   
24.
The clonal subtypes of cells in the osteogenic family represented by fibroblastoid MBA-15.33, preosteoblast MBA-15.4, and mature osteoblastic MBA-15.6 cells were used to study the effects of glucocorticoid (dexamethasone). The role of dexamethasone was monitored on cell attachment when plated on various protein substrata (BSA, collagen I, and Matrigel). A 24 h exposure of the cells to 10-6 M or 10-7 M dexamethasone differential affects their attachment preference. MBA-15.33 and MBA-15.4 cells increased their attachment capability on collagen I, while MBA-15.6 cells' attachment was inhibited. Pretreatment with (10-6 M) dexamethasone caused an increase in attachment on Matrigel by MBA-15.33 cells and to less extent by MBA-15.4 cells. Additionally, measurements of two enzymatic activities were monitored; one is alkaline phosphatase (ALK-P), and the second is neutral endopeptidase (CD10/NEP). MBA-15.33, MBA-15.4, and MBA-15.6 cells were exposed to dexamethasone or to various growth factors (bone morphogenic protein (BMP-2 and BMP-3), TGFβ, and IGF-I). In some experiments, pretreatment of cells by dexamethasone was followed by exposure to the growth factors. The cells' challenged cellular responses were not uniform and revealed a differential pattern when their ALK-P and CD10/NEP enzymatic activities were measured. © 1996 Wiley-Liss, Inc.  相似文献   
25.
Man-made submerged structures, including shipwrecks, offering substrata for fouling organisms and fish, have been classified secondarily as artificial reefs (ARs). The current approach in AR design is that of low-profile structures placed on the seabed and attempting to mimic natural reef (NR) communities with the aim of mitigating degraded marine ecosystems. To examine the validity of this concept, a long-term comparison of the developing AR fouling communities to those of nearby NRs is required. A survey of the fouling reefal organisms was conducted on seven shipwrecks (Red Sea, Egypt), comprising three young (ca 20 years old) and four old (>100 years old) unplanned ARs, in comparison to nearby NR communities. The hypothesis tested was that the age of the ARs shapes the structure of their fouling coral communities. The results demonstrated distinct differences between ARs and NRs and between young and old ARs. While the species composition on ARs may resemble that of NRs after approximately 20 years, obtaining a similar extent of coral cover may require a full century. Moreover, differences in structural features between ARs and NRs may lead to differences in species composition that persist even after 100 years.  相似文献   
26.
Sinularia leptoclados (Ehrenberg, 1834) is re-described. Sinularia leptoclados var. gonatodes Kolonko, 1926 is synonymized with Sinularia maxima Verseveldt, 1977. Two new species of Sinularia with digitiform lobules, leptoclados-type surface clubs and unbranched interior spindles, are described. An updated maximum likelihood tree of Sinularia species with leptoclados-type clubs (clade 5C) based on two mitochondrial genes (mtMutS, COI) and a nuclear gene (28S rDNA) is presented.  相似文献   
27.
Osteosarcoma cells are recognized by abnormal function that causes a primary bone tumor. Osteosarcoma cells U2OS and SAOS‐2 were analyzed for the expression of cell surface markers. High expression was quantified for hyaloronidase receptor (CD‐44) > moderate for integrins (CD‐51 and ‐61), > and lower for selectins (CD‐62). High mitotic capacity were demonstrated by gene expression (measured by RT‐PCR) and the protein level (measured by FACS) for cFOS, cMYC, and cJUN. The basic definition of osteosarcoma is excessive production of pathological osteoid. Expression of mRNA for matrix genes osteocalcin, osteonectin, and biglycan was studied. Osteocalcin and osteonectin were detected in RNA from primary cultured marrow stromal, trabecular bone cells, and osteosarcoma cell lines (U2OS, SAOS‐2). mRNA for biglycan was detected only in primary cells and MG‐63 cell line and was undetectable in RNA from U2OS, SAOS‐2 osteosarcoma cell lines and by RNA extracted from bone biopsies of osteosarcoma patients. The absence of biglycan message observed in osteosarcoma samples provides evidence for the alterations in the extra cellular matrix which result with non‐mineralized osteoid produced by the osteosarcoma cells. J. Cell. Biochem. 84: 108–114, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   
28.
Biomechanics and Modeling in Mechanobiology - An inactive sedentary lifestyle is a common risk factor contributing to sarcopenic obesity. At the cell scale, sustained mechanical deformations of the...  相似文献   
29.
30.
Lumbar spinal canal stenosis (LSCS) is a degenerative disease observed by hypertrophy of the ligamentum flavum (LF) that cause compression of the lumbar neural content. Diabetes mellitus (DM) is a risk factor for the disease and we have shown previously that DM increases the fibrosis and elastic fiber loss in patients with LSCS. The purpose of this study was to find the proteins that play a role in the development of this clinical pathogenesis and the effect of DM on protein expression. LF tissue retrieved from patients diagnosed with LSCS, some were also diagnosed with DM, were compared with LF from patients diagnosed with herniated nucleus pulposus (HNP). The tissues were analyzed by mass spectrometry for proteins profile alteration. We found that LF of LSCS/DM patients exhibited significantly higher levels of proteoglycan proteins and latent transforming growth factor β-binding protein (LTBP2 and LTBP4). Additionally, an increase of HTRA serine protease 1 and insulin-like growth factor binding protein-5 were noted. The higher fibrosis was also associated with proteins related to inflammation and slower tissue repair. Collagen 6 and transforming growth factor inhibitor are related to activation of the anti-inflammatory M2 pathway that is associated with tissue repair. The decrease of these proteins expression in LSCS/DM is associated with increased levels and activation of M1 pro-inflammatory pathways. Interestingly, C3 and C4b members of the complement complex and mannose receptor-like protein (CLEC18) paralogous proteins were detectable solely at the LSCS/DM patients’ samples. Histology analysis shows that inflammatory was induced by the hyperglycemic conditions in diabetic patients involve in altering the matrix compositions. Thus, the protein profiles associated with inflammatory pathways affecting the LF suggested increasing susceptibility of developing the degeneration under hyperglycemic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号