首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7725篇
  免费   686篇
  国内免费   70篇
  8481篇
  2023年   68篇
  2022年   114篇
  2021年   224篇
  2020年   140篇
  2019年   195篇
  2018年   210篇
  2017年   220篇
  2016年   275篇
  2015年   465篇
  2014年   445篇
  2013年   577篇
  2012年   672篇
  2011年   602篇
  2010年   446篇
  2009年   392篇
  2008年   475篇
  2007年   415篇
  2006年   371篇
  2005年   304篇
  2004年   333篇
  2003年   252篇
  2002年   249篇
  2001年   83篇
  2000年   57篇
  1999年   61篇
  1998年   52篇
  1997年   51篇
  1996年   43篇
  1995年   40篇
  1994年   37篇
  1993年   40篇
  1992年   35篇
  1991年   34篇
  1990年   37篇
  1989年   41篇
  1988年   22篇
  1987年   22篇
  1986年   22篇
  1985年   32篇
  1984年   30篇
  1983年   19篇
  1982年   27篇
  1981年   17篇
  1980年   19篇
  1979年   19篇
  1978年   14篇
  1977年   12篇
  1976年   15篇
  1975年   27篇
  1974年   14篇
排序方式: 共有8481条查询结果,搜索用时 0 毫秒
31.
To enhance target production from biocatalysts, it is necessary to thoroughly understand the molecular mechanisms involved in production, degradation, and, importantly, adaptation to the required environment. One such bacterium with high potential for biocatalysis is the solvent-tolerant bacteria Pseudomonas putida S12, which, among others, is able to degrade organic solvents. For bioconversion of organic solvents to become a successful industrial process, the understanding of the molecular response upon solvent tolerance is essential. Here we performed a quantitative analysis of the P. putida S12 proteome at different stages of adaptation to toluene. Using a stable isotope dimethylation labeling approach we monitored the differential expression of 528 proteins, including often hard-to-detect membrane associate proteins, such as multiple RND-family transporters and ABC transporters of nutrients. Our quantitative proteomics approach revealed the remarkable ability of P. putida S12 to severely change its protein expression profile upon toluene exposure. This proteome response entails a significant increase in energy metabolism and expression of the solvent efflux pump SrpABC, confirming its role in solvent tolerance. Other proteins strongly up-regulated in the presence of toluene include the multidrug efflux membrane protein PP1272 and the cation/acetate symporter ActP and may form interesting alternative targets for improving solvent tolerance.  相似文献   
32.
33.
P-selectin (SELP) and its counter-receptor, P-selectin glycoprotein ligand-1 (PSGL-1), play key role in the transient attachment of leukocytes to endothelial cells predisposing to coronary heart disease (CHD). In the current report, 293 angiographically proven CHD patients and 327 age, gender, and race-matched controls were included. Our aim was to evaluate the contribution to CHD of the following SNPs: C-2123G, G-1969A and T715P in SELP, Met62Ile and the VNTR variants in PSGL-1 gene in a North African population from Tunisia. While there were no significant differences in the distribution of SELP or PSGL-1 alleles or genotypes between patients and controls, a trend for a significant association of the C-2123G genotypes distribution with incident CHD was observed (P = 0.06). Assuming an additive model of transmission, the risk was 74% higher among subjects carrying the GG genotypes in comparison to those carrying the CC genotype (OR = 1.74 [1.01–2.98], P = 0.04) and 80% higher in the recessive model (OR = 1.80 [1.08–3.01], P = 0.02). Haplotype analysis did not identify any specific SELP or PSGL-1 haplotypes to be associated with CHD. The present study demonstrated no evidence of association between individual SELP or PSGL-1 SNPs or haplotypes with incident CHD. However, this study replicates absence of association of the mostly studied SNP, T715P, previously reported in individuals with African origin.  相似文献   
34.
Bacillus subtilis strain 14B was used to produce a novel antimicrobial peptide (bacteriocin) called Bac 14B. Pure bacteriocin was obtained after heat and acidic treatments (80°C and pH 4), precipitation by ammonium sulfate, and chromatography on Sephadex G-50 and Mono Q Sepharose columns. Based on MALDI-TOF mass spectrometry analysis, purified Bac 14B is a monomer protein with a molecular mass of 20110.13 Da. N-terminal sequencing allowed for the straightforward identification of its first 12 residues, which were of a pure bacteriocin. It also revealed that this bacteriocin contained a unique sequence, namely M-L-K-A-N-L-Q-N-P-L-N-A, suggesting the identification of a novel compound. Bac 14B was stable for 1 h at temperatures up to 80°C and pH of 4 ∼ 8. It also proved sensitive to various proteases, which demonstrated its protein nature. Bac 14B displayed a bacteriolytical mode of action and a broad range of inhibitory spectra toward Gram-positive and -negative pathogens. Interestingly, based on conventional agronomic seed vigor parameters, the application of Bac 14B (500 activity units/mL) to various crops revealed that this bacteriocin was a potent exogenous enhancer of growth that stimulated the seedling vigor of tomatoes and muskmelons. Compared to those of the control, the germination percentage, shoot weight, shoot height, and root length were all significantly enhanced in Bac 14B-treated plant seeds. Bac 14B also exhibited effective disinfectant properties against a wide range of seedborne diseases and significant effects on the control of damping off diseases, particularly at the pregermination stage. It also proved to be effective against root rot diseases caused by Alternaria solani and other bacterial seedborne pathogens such as wilt diseases. The findings indicate that Bac 14B is the first B. subtilis-produced bacteriocin ever reported to exhibit such promising biological properties.  相似文献   
35.
Injection of tumor cells in mice more than 30 years ago resulted in the discovery of an epithelial antigen, later defined as a cell adhesion molecule (EpCAM). Although EpCAM has since evoked significant interest as a target in cancer therapy, mechanistic insights on the functions of this glycoprotein have been emerging only very recently. This may have been caused by the multitude of functions attributed to the glycoprotein, its localization at different subcellular sites and complex posttranslational modifications. Here, we review how EpCAM modifies cell–cell contact adhesion strength and tissue plasticity, and how it regulates cell proliferation and differentiation. Major knowledge derived from human diseases will be highlighted: Mutant EpCAM that is absent from the cell surface leads to fatal intestinal abnormalities (congenital tufting enteropathy). EpCAM-mediated cell proliferation in cancer may result from signaling (i) via regulated intramembrane proteolysis and/or (ii) the localization and association with binding partners in specialized membrane microdomains. New insight in EpCAM signaling will help to develop optimized cancer therapies and open new avenues in the field of regenerative medicine.  相似文献   
36.
α-Synuclein (αS) is an abundant neuronal cytoplasmic protein implicated in Parkinson's disease (PD), but its physiological function remains unknown. Consistent with its having structural motifs shared with class A1 apolipoproteins, αS can reversibly associate with membranes and help regulate membrane fatty acid composition. We previously observed that variations in αS expression level in dopaminergic cultured cells or brains are associated with changes in polyunsaturated fatty acid (PUFA) levels and altered membrane fluidity. We now report that αS acts with PUFAs to enhance the internalization of the membrane-binding dye, FM 1-43. Specifically, αS expression coupled with exposure to physiological levels of certain PUFAs enhanced clathrin-mediated endocytosis in neuronal and non-neuronal cultured cells. Moreover, αS expression and PUFA-enhanced basal and -evoked synaptic vesicle (SV) endocytosis in primary hippocampal cultures of wild type (wt) and genetically depleted αS mouse brains. We suggest that αS and PUFAs normally function in endocytic mechanisms and are specifically involved in SV recycling upon neuronal stimulation.  相似文献   
37.
Uropathogenic Escherichia coli (UPEC) colonizing kidneys is the main cause of acute pyelonephritis. TLR5 that senses flagellin was shown to be highly expressed in the bladder and to participate in host defence against flagellated UPEC, although its role in kidneys still remains elusive. Here we show that TLR5 is expressed in renal medullary collecting duct (MCD) cells, which represent a preferential site of UPEC adhesion. Flagellin, like lipopolysaccharide, stimulated the production of the chemoattractant chemokines CXCL1 and CXCL2, and subsequent migration capacity of neutrophils in cultured wild‐type (WT) and Tlr4?/? MCDs, but not in Tlr5?/? MCDs. UPEC can translocate across intact MCD layers without altering tight junctions. Strikingly, the invasion capacity and transcellular translocation of the UPEC strain HT7 were significantly lower in Tlr5?/? than in WT MCDs. The non‐motile HT7ΔfliC mutant lacking flagellin also exhibited much lower translocation capacities than the HT7 isolates. Finally, Tlr5?/? kidneys exhibited less infiltrating neutrophils than WT kidneys one day after the transurethral inoculation of HT7, and greater delayed renal bacterial loads in the day 4 post‐infected Tlr5?/? kidneys. Overall, these findings indicate that the epithelial TLR5 participates to renal antibacterial defence, but paradoxically favours the translocation of UPEC across intact MCD cell layers.  相似文献   
38.
Helicobacter pylori (H. pylori) causes gastric mucosa inflammation and gastric cancer mostly via several virulence factors. Induction of proinflammatory pathways plays a crucial role in chronic inflammation, gastric carcinoma, and H. pylori pathogenesis. Herbal medicines (HMs) are nontoxic, inexpensive, and mostly anti-inflammatory reminding meticulous emphasis on the elimination of H. pylori and gastric cancer. Several HM has exerted paramount anti-H. pylori traits. In addition, they exert anti-inflammatory effects through several cellular circuits such as inhibition of 5′-adenosine monophosphate-activated protein kinase, nuclear factor-κB, and activator protein-1 pathway activation leading to the inhibition of proinflammatory cytokines (interleukin 1α [IL-1α], IL-1β, IL-6, IL-8, IL-12, interferon γ, and tumor necrosis factor-α) expression. Furthermore, they inhibit nitrous oxide release and COX-2 and iNOS activity. The apoptosis induction in Th1 and Th17-polarized lymphocytes and M2-macrophagic polarization and STAT6 activation has also been exhibited. Thus, their exact consumable amount has not been revealed, and clinical trials are needed to achieve optimal concentration and their pharmacokinetics. In the aspect of bioavailability, solubility, absorption, and metabolism of herbal compounds, nanocarriers such as poly lactideco-glycolide-based loading and related formulations are helpful. Noticeably, combined therapies accompanied by probiotics can also be examined for better clearance of gastric mucosa. In addition, downregulation of inflammatory microRNAs (miRNAs) by HMs and upregulation of those anti-inflammatory miRNAs is proposed to protect the gastric mucosa. Thus there is anticipation that in near future HM-based formulations and proper delivery systems are possibly applicable against gastric cancer or other ailments because of H. pylori.  相似文献   
39.
Although proteomics has been exploited in a wide range of diseases for identification of biomarkers and pathophysiological mechanisms, there are still biomedical disciplines such as otology where proteomics platforms are underused due to technical challenges and/or complex features of the disease. Thus, in the past few years, healthcare and scientific agencies have advocated the development and adoption of proteomic technologies in otological research. However, few studies have been conducted and limited literature is available in this area. Here, we present the state of the art of proteomics in otology, discussing the substantial evidence from recent experimental models and clinical studies in inner-ear conditions. We also delineate a series of critical issues including minute size of the inner ear, delicacy and poor accessibility of tissue that researchers face while undertaking otology proteomics research. Furthermore, we provide perspective to enhance the impact and lead to the clinical implementation of these proteomics-based strategies.  相似文献   
40.
Pesticide mixtures can reduce the rate at which insects evolve pesticide resistance. However, with live biopesticides such as the naturally abundant pathogen Bacillus thuringiensis (Bt), a range of additional biological considerations might affect the evolution of resistance. These can include ecological interactions in mixed infections, the different rates of transmission post-application and the impact of the native biodiversity on the frequency of mixed infections. Using multi-generation selection experiments, we tested how applications of single and mixed strains of Bt from diverse sources (natural isolates and biopesticides) affected the evolution of resistance in the diamondback moth, Plutella xylostella, to a focal strain. There was no significant difference in the rate of evolution of resistance between single and mixed-strain applications although the latter did result in lower insect populations. The relative survivorship of Bt-resistant genotypes was higher in the mixed-strain treatment, in part owing to elevated mortality of susceptible larvae in mixtures. Resistance evolved more quickly with treatments that contained natural isolates, and biological differences in transmission rate may have contributed to this. Our data indicate that the use of mixtures can have unexpected consequences on the fitness of resistant and susceptible insects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号